
Representing Strategies for the Connection

Calculus in Rewriting Logic

Bjarne Holen1, Einar Broch Johnsen1, and Arild Waaler2,1

1 Department of Informatics, University of Oslo, Norway
2 Finnmark College, Norway

{bjarneh,einarj,arild}@ifi.uio.no

Abstract. Rewriting logic can be used to prototype systems for automated deduc-
tion. In this paper, we illustrate how this approach allows experiments with deduction
strategies in a flexible and conceptually satisfying way. This is achieved by exploiting
the reflective property of rewriting logic. By specifying a theorem prover in this way one
quickly obtains a readable, reliable and reasonably efficient system which can be used
both as a platform for tactic experiments and as a basis for an optimized implementa-
tion. The approach is illustrated by specifying a calculus for the connection method in
rewriting logic which clearly separates rules from tactics.

Keywords: Rewriting logic, reflection, meta-programming, Maude, connection
method, propositional logic.

1 Introduction

The aim of this paper is to show how rewriting logic [10] may be used to design a
rapid prototype of a logical system and use this as a framework for experiment-
ing with search strategies. We shall, more precisely, provide a simple rewriting
logic specification of the connection calculus [1, 3] and invoke the Maude inter-
preter [7,9,13] for the purpose of executing the specification. Although we have
implemented a system for a full first-order language without equality [8], it is
sufficient for the purposes of this paper to focus on a propositional language.

Rewriting logic is ideal for the specification of rule-based logical systems. If effi-
ciency is not an issue, specifying deduction rules as rewrite rules is in fact suffi-
cient for obtaining a search engine; the breadth-first rewrite strategy of Maude
will systematically traverse the search space spanned by the rules. If, on the
other hand, efficiency is at stake, more sophisticated tactics than breadth-first
should be adopted. In rewriting logic this can be achieved through specifications
at the meta-level.

The theoretical basis for representing tactics at the meta-level resides in the
reflective property of rewriting logic, by means of which we can construct meta-
programs that control the execution of other rewrite theories. The rewrite theory

simulating execution of other rewrite theories is often referred to as the Uni-
versal Rewrite Theory. More precisely, there exists in rewriting logic a finitely
presented rewrite theory U (the universal theory) which allows any finitely pre-
sented rewrite theory R to be specified as a term R such that R ` t −→ t′ if
and only if U ` 〈R, t〉 −→ 〈R, t′〉. Moreover, the reflective property gives us the
ability to simulate execution using the Universal Rewrite Theory. If a rewrite
theory specifies a logical calculus this is very helpful as it in principle provides
full freedom at each step in the deduction process. To see how the Universal
Rewrite Theory can be implemented in Maude, see [5, 6].

We shall compare our executable specifications with the connection-based Pro-
log implementation leanCoP of Otten and Bibel [4], an efficient implementation
in the family of lean provers (like leanTAP [2], ileanTAP [11], and linTAP [12]).
Since leanCoP’s search strategy is intimately tied to the internal control mech-
anism of Prolog, it illustrates both the strength and the shortcomings of Prolog
as an implementation language. Exploiting the internal language constructs of
Prolog gives a remarkably compact code; it is, on the other hand, hard to exper-
iment with tactics without fundamentally changing the underlying structure of
the program. The main reason for this is that the formulation of logical calculus
and strategic choices are intermixed.

A novel feature of the rewriting logic specification is that the specification itself
is executable, we also obtain readable and highly reliable code. Even though the
Maude platform is reasonably efficient, it is not competitive to, say C; however,
if we want to optimize speed we may still benefit considerably from tactic ex-
periments in a Maude prototype prior to an implementation in an imperative
language.

2 Constructing the Calculus

A matrix representation of a formula is obtained by converting the formula into
DNF, where each column in the matrix is a DNF clause. A path consists of one
literal from each DNF clause (column in the matrix). The formula is valid if it
is equivalent to a conjunction of tautologies. This is the case if all paths through
the matrix contain connections; i.e., all paths contain a literal and its negation.

A column in the matrix will be specified as a multiset of literals, a matrix will
consist of a multiset of clauses. In rewriting logic we construct multisets by con-
structing commutative associative lists. Atoms will be represented by lowercase
letters for readability. The sort Lit of literals is defined by constructors:

ops a b c d e f x y z : -> Lit [ctor] .

op -_ : Lit -> Lit [ctor] . *** a negated atom is also a literal

Remark that to get a dynamic representation we can use an enumerating scheme
instead, using a constructor defined as op p : Nat -> Lit [ctor]. A clause
is a multiset of literals inside brackets; matrices are represented as multisets of
clauses inside brackets:

subsort Lit < LitSet .

op none : -> LitSet [ctor] .

op _,_ : LitSet LitSet -> LitSet [ctor assoc comm id: none] .

op [_] : LitSet -> Clause [ctor] .

subsort Clause < ClauseSet .

op none : -> ClauseSet [ctor] .

op _,_ : ClauseSet ClauseSet -> ClauseSet [ctor assoc comm id: none] .

op [_] : ClauseSet -> Matrix [ctor] .

Below, the matrix to the left will get the representation to the right.[[
¬Q
P

] [
¬R
S

] [
¬S
Q

]
[¬P]

]
[[- q, p], [- r, s], [- s, q], [- p]]

Like LeanCoP [4], the calculus operates on a structure which contains three
elements: the active path, the active clause, and the remaining matrix. The
active path consists of a set of literals, represented by a term of the sort LitSet.
The active clause is a term of the sort Clause and the remaining matrix is a
term of the sort Matrix. The structures that our calculus operates on will be
terms of the sort SearchState, which hold terms for active path, active clause,
and the remaining matrix:

op <_;_;_> : LitSet Clause Matrix -> SearchState [ctor] .

Some of our deductive rules will split the SearchState element into two other
SearchState elements, so we need to be able to represent more than one of
these structures. We form lists of them, called SearchStateLists.

subsort SearchState < SearchStateList .

op nil : -> SearchStateList [ctor] .

op __ : SearchStateList SearchStateList -> SearchStateList [ctor assoc id: nil] .

If a connection is located, we are on the right track. Should we, on the other
hand, encounter a path through the matrix which contains no connections, this
path represents a countermodel and we can terminate the search. A SearchState

element with a connection will have an empty active clause, while a SearchState
element with an empty remaining matrix does not contain any connections. The
sort which represents paths with connections and paths without connections will
be a subsort of SearchState, and contains two constants.

sort TerminationValue .

subsort TerminationValue < SearchState .

ops valid notvalid : -> TerminationValue [ctor] .

There are eight rules in the calculus, the first of these will simply select a clause
from the matrix and make this our active clause.

rl [init]:

< none ; emptyClause ; [CLA, CLASET] >

=>--------------------------------------

< none ; CLA ; [CLASET] > .

The CLA variable is a variable of the sort Clause, CLASET is a variable of the sort
ClauseSet. The constant emptyClause represents an empty clause (we have not
selected an active clause).

rl [negLitInPath]:

< LITSET1, - LIT ; [LIT, LITSET2] ; M >

=>---------------------------------------

< LITSET1, - LIT ; [LITSET2] ; M > .

This rule locates a connection between an element inside the active clause and
the active path. We cut off all paths which contain connections by eliminating
the element LIT from our active clause. All paths through the matrix containing
the active path (LITSET1, - LIT) which also contain the element LIT inside the
active clause, will have a connection. We eliminate these paths by removing the
element LIT from the active clause. This rule has a dual rule where the negated
literal is inside the active clause instead of the active path, but is otherwise
the same rule. This is how we prune the exponential search space using the
connection method: we eliminate paths already known to have a connection.

rl [negLitInMatrix]:

< PATH ; [LIT, LITSET1] ; [[- LIT, LITSET2], CLASET] >

=>--

< PATH, LIT ; [LITSET2] ; [CLASET] >

< PATH ; [LITSET1] ; [[- LIT, LITSET2], CLASET] > .

This rule is a bit more complex than the previous one, but it prunes the search
space in the same manner. All paths that enter the active clause will contain
the element LIT or some element in LITSET1 (there really is no other option).
All paths containing the element LIT inside the active clause which also con-
tain the element - LIT in the remaining matrix, will have connections. The first
SearchState element states this. We add LIT to our active path, then make
[- LIT, LITSET2] from our remaining matrix our new active clause, but we

remove the element - LIT since these paths will have connections (since the ac-
tive path contains LIT). The second SearchState element represents all paths
not containing the element LIT inside the active clause of our first SearchState
element. This rule also has its own dual rule where the negated literal is lo-
cated inside the active clause instead of the remaining matrix, but is otherwise
identical.

If we fail to locate connections between elements inside the active clause and the
active path (the second deductive rule), and we also fail to locate connections
between elements inside the active clause and the remaining matrix, our hope of
pruning the search space is lost. It is then necessary to extend the active path,
which is done by applying the fourth deductive rule.

rl [extendPath]:

< PATH ; [LIT, LITSET] ; [CL, CLASET] >

=>--

< PATH, LIT ; CL ; [CLASET] >

< PATH ; [LITSET] ; [CL, CLASET] > .

All we need now to complete the calculus is to locate the axioms or paths with
and without connections, which is done by the following two structural rules.

rl [removeConnectedPaths]:

< PATH ; [none] ; M >

=>---------------------

valid .

rl [counterModel]:

< PATH ; [LIT, LITSET] ; [none] >

=>---------------------------------

notvalid .

The specification of the calculus is now complete. However, note that uncon-
strained use of extendPath leads to inconsistency, since the rule can be applied
to a SearchState element as long as the remaining matrix and active clause are
inhabited. If we repeatedly apply this rule to a SearchState element we will
end up with a SearchState element somewhere in the SearchStateList on
the form < PATH ; [LITSET] ; [none] >, which represents a countermodel. If sound-
ness shall not be compromised we have to look for connections (apply the rules
negLitInPath and negLitInMatrix) before we apply the rule extendPath. This
could have been solved using conditional rules (implementing side conditions on
rules). However, that reduces efficiency, since the side conditions would have to
be tested at each deductive step. Instead we shall use a meta-program to control
the order of rule applications.

3 Controlling the Rules of Deduction at the Meta-level

Maude is specifically designed to construct meta-programs. The most important
facility of the Universal Rewrite Theory (which is here used to simulate execution
of other rewrite theories) is pre-implemented in a module called META-LEVEL. To
use this module we have to meta-represent terms and other modules according to
the specifications that can be found in the pre-implemented modules META-TERM
and META-MODULE. The module META-LEVEL contains several functions that help
us simulate execution at the meta-level [7, 9]. The most versatile of these is:

op metaXapply : Module Term Qid Substitution Nat Bound Nat -> Result4Tuple .

This function will be the core of all strategic choices implemented at the meta-
level. The first three arguments of the metaXapply function are a meta-represented
Module (rewrite theory), a meta-represented Term, and a meta-represented rule-
name, which represents the rewrite rule we would like to apply to our Term.
Terms of sort Qid are used for uninterpreted symbols in Maude and are written
as a quoted list of characters.

A call to the metaXapply function will produce a Result4Tuple if it is possible
to apply the desired rule to the Term. The Result4Tuple contains some extra
information besides the resulting term, and we extract the resulting term by
means of the getTerm function in our examples. If the rule application was not
possible a failure term is returned by this function. This function gives us full
freedom with respect to which rule of a given rewrite theory we want to apply
to a given term of the theory.

A basic strategy. A first meta-level function will try to apply the rules of the
calculus in a specific order. We initialize the term by applying the rule ’init

to select an active clause inside our SearchState element. We then apply the
other rules recursively in the following order: negLitInPath, negLitInMatrix,
and extendPath. This will produce a list of SearchState elements. The list
is passed to another function which determines whether or not the elements
represent paths with or without connections, by applying the deductive rules
counterModel and removeConnectedPaths recursively.

The meta-represented Module will be a meta-representation of the deductive
rules of the calculus and the Term will be a meta-represented SearchState

element which is un-initialized; i.e., it has no active clause. The init function
applies the ’init rule to the SearchState element.

op init : Module Term -> Term [ctor] .

eq init(M, T) =

getTerm(metaXapply(M, T, ’init, none, 0, unbounded, 0)) .

Below is the result of applying this function to a term, one of the clauses inside
the remaining matrix becomes the first active clause.

Before: < none ; emptyClause ; [[a, - b] , [b, - a], [c, d], [a, b], [b, a]] >

After: < none ; [a, - b] ; [[b, - a], [c, d], [a, b], [b, a]] >

When the active clause has been selected and removed from the remaining ma-
trix, we are ready to start looking for connections. This will be handled by the
next function.

op basicStrat : Module Term -> Term [ctor] .

eq basicStrat(M, T) =

if (metaXapply(M, T, ’negLitInPath, none, 0, unbounded, 0) =/= failure)

then

basicStrat(M, getTerm(metaXapply(M, T, ’negLitInPath, none, 0, unbounded, 0)))

else if

(metaXapply(M, T, ’negLitInMatrix, none, 0, unbounded, 0) =/= failure)

then

basicStrat(M, getTerm(metaXapply(M, T, ’negLitInMatrix, none, 0, unbounded, 0)))

else if

(metaXapply(M, T, ’extendPath, none, 0, unbounded, 0) =/= failure)

then

basicStrat(M, getTerm(metaXapply(M, T, ’extendPath, none, 0, unbounded, 0)))

else

T

fi fi fi .

We test whether a ’rule can be applied with the statement:

if (metaXapply(M, T, ’rule, none, 0, unbounded, 0)=/= failure)

If metaXapply returns a failure term this implies that the ’rule cannot be
applied to the term T, and the if-test will fail. We must assure that we only
apply applicable rules to our term, so the function basicStrat has if-tests before
each attempted rule application. The function basicStrat is called recursively
with the resulting term after a rule has been applied to the term (we extract
the term from the Result4Tuple that metaXapply returns with the function
getTerm). The function basicStrat produces a list of SearchState elements
which is handed over to the function simplify.

op simplify : Module Term -> Term [ctor] .

eq simplify(M, T) =

if (metaXapply(M , T, ’removeConnectedPaths, none, 0, unbounded, 0) =/= failure)

then

simplify(M, getTerm(metaXapply(M , T, ’removeConnectedPaths, none, 0, unbounded, 0)))

else if

(metaXapply(M , T, ’counterModel, none, 0, unbounded, 0) =/= failure)

then

simplify(M, getTerm(metaXapply(M , T, ’counterModel, none, 0, unbounded, 0)))

else T

fi fi .

This function determines whether SearchState elements represent paths with
or without connections. Note that all elements inside the SearchStateList pro-
duced by the function basicStrat will represent paths either with or without
connections. The three functions just described are combined to produce a search
strategy:

op proveBasic : Module Term -> Term [ctor] .

eq proveBasic(M, T) =

simplify(M, basicStrat(M, init(M, T))) .

Far from optimized, this implements a sound strategy for the calculus. A propo-
sitional connection based theorem prover should terminate the proof search as
soon as a path without a connection is located, the first strategy presented does
not.

A refined strategy. A more refined strategy is now introduced, which addresses
this problem. This refined strategy also solves the efficiency problems that oc-
cur when we try to match large terms to a set of rewrite rules. Some of the
deductive rules produce a new SearchState element. The strategy will place
newly generated SearchState elements onto a stack. This gives us the ability
to terminate the proof search as soon as a path without a connection is lo-
cated. We avoid matching large terms (i.e., the whole SearchStateList) to the
rewrite rules, which would reduce the efficiency of the algorithm. The idea be-
hind this strategy is to investigate one SearchState element a time, loading new
SearchState elements onto a stack. If the SearchState element we investigate
represents paths with connections, we pop an element of the stack and start to
investigate this element. If the SearchState element we investigate represents
a path without a connection, the proof search ends. We try to apply the rule
negLitInPath first to ensure soundness, since the last rule application can leave
us with SearchState elements on the form < PATH , LIT ; [- LIT] ; [none] >.

eq refinedStrat(M, ACTIVE, STACK) =

if (metaXapply(M, ACTIVE, ’negLitInPath, none, 0, unbounded, 0) =/= failure)

then

refinedStrat(M,

getTerm(metaXapply(M, ACTIVE, ’negLitInPath, none, 0, unbounded, 0)), STACK)

else if (simplify(M, ACTIVE) == ’notvalid.TerminationValue)

then ’notvalid.TerminationValue **** proof search terminates ****

else if (simplify(M, ACTIVE) == ’valid.TerminationValue)

then refinedStrat(M, metaPop(M, STACK), metaPopped(M, STACK))

else if (metaXapply(M, ACTIVE, ’negLitInMatrix, none, 0, unbounded, 0) =/= failure)

then

refinedStrat(M, metaFirst(M, getTerm(metaXapply(M, ACTIVE,

’negLitInMatrix, none, 0, unbounded, 0))),

metaPush(M, metaRest(M, getTerm(metaXapply(M, ACTIVE,

’negLitInMatrix, none, 0, unbounded, 0))), STACK))

else if

(metaXapply(M, ACTIVE, ’extendPath, none, 0, unbounded, 0) =/= failure)

then

refinedStrat(M, metaFirst(M, getTerm(metaXapply(M, ACTIVE,

’extendPath, none, 0, unbounded, 0))),

metaPush(M, metaRest(M, getTerm(metaXapply(M, ACTIVE,

’extendPath, none, 0, unbounded, 0))) , STACK))

else ’valid.TerminationValue

fi fi fi fi fi .

In order to create a decision strategy, we initialize the SearchState element and
call the function refinedStrat with the meta-representation of an empty stack.

op proveRefined : Module Term Term -> Term [ctor] .

eq proveRefined(M, T) =

refinedStrat(M, init(M, T), ’nil.SearchStateList) .

A small example is now given to illustrate how the refined strategy works
compared to the basic strategy previously introduced. The difference is best
seen with a matrix without any connections: [[a, - b], [c, d], [- e, f]].
Both strategies start by loading this matrix into the remaining matrix part of
a SearchState element, and then initialize the term (select an active clause).
This will be the resulting term:

< none ; [a, - b] ; [[c, d], [- e, f]] >

Then the functions basicStrat and refinedStrat are called to apply the de-
ductive rules to this term. The only rule we are able to apply is extendPath

since there are no connections in the matrix. After the first function call to both
functions (basicStrat and refinedStrat), we end up with the following term.
The two elements in the SearchStateList are enumerated to see the difference
between the strategies.

1. < a ; [c, d] ; [[- e, f]] >

2. < none ; [- b] ; [[c, d], [- e, f]] >

The function basicStrat will now try to apply the deductive rules to the
SearchStateList, while refinedStrat will place element no. 2 on its stack
of un-investigated elements, and continue with no. 1. This has considerable
impact when terms become large, since all deductive rules will try to match
each element inside the list when the basicStrat is employed. Now as both
functions call themselves recursively, the refinedStrat function has placed the
second SearchState element onto its stack. After the second recursive call to
both functions we obtain the following term or SearchStateList, enumerated
to highlight the difference between the strategies.

1. < a, c ; [- e, f] ; [none] >

2. < a ; [d] ; [[- e, f]] >

3. < none ; [- b] ; [[c, d], [- e, f]] >

Recall that we are still only able to apply the rule extendPath since no connec-
tions exist, basicStrat will use more time to figure out this as well since it will
match the rules against a larger term. After the second recursive call to both
functions basicStrat’s term consists of the three elements above, while the
refinedStrat has placed 2 and 3 on its stack of un-investigated SearchState

elements. The next recursive call to the function refinedStrat will reveal that
SearchState element no. 1 represents a path without a connection (or actually
two). Then the whole search can be called off, there is no need to investigate the
paths lying on the stack since we already have located a path without a con-
nection. The function basicStrat still finds applicable rules to its term since
it consists of all three elements, and the rule extendPath can be applied to
element 2 and 3, this process will continue until all the elements inside the
SearchStateList are on the form < PATH ; [LITSET] ; [none] >. When all the el-
ements are on this form basicStrat will be unable to apply any of the three
deductive rules and the SearchStateList is handed over to the simplify func-
tion which reduces the whole list of paths without connections to the constant
notvalid.

Performance. In Fig. 1 we can see the performance results of the two strategies
presented on some test formulas. We have tested the same formulas on the Prolog
prover of Otten and Bibel for comparison. As soon as matrices become large the
implementation in Maude struggles. However, when we compare the two strate-
gies introduced in the paper we can see that we have been able to optimize the
term rewriting (deductive process) a great deal with the refined strategy. Prolog
struggles with invalid formulas since this can cause a lot of backtracking (this is
only necessary for the first order part, so this causes unnecessary computation on

propositional formulas). When formulas are valid there will be no backtracking
with leanCoP, and it will usually be faster.

Test formula basicStrat refinedStrat leanCoP

1 GRA001-1.p 530 ms 40 ms 10 ms

2 NUM285-1.p - 36.8 min -

3 PUZ009-1.p 90 ms 20 ms 20 ms

4 PUZ013-1.p 1.5 sec 90 ms 420 ms

5 PUZ016-2.004.p - 220 ms -

6 SYN092-1.003.p - 70 ms 10 ms

7 SYN011-1.p 20 ms 10 ms 0 ms

8 SYN093-1.002.p 2.7 sec 130 ms 0 ms

9 SYN004-1.007.p 340 ms 40 ms 10 ms

10 SYN008-1.p 0 ms 0 ms 0 ms

11 SYN003-1.006.p 110 ms 20 ms 0 ms

12 SYN85-1.010.p 20 ms 10 ms 0 ms

13 SYN86-1.003.p - 20 ms 20 ms

14 SYN087-1.003.p - 20 ms 0 ms

15 SYN089-1.002.p 10 ms 0 ms 0 ms

16 SYN091-1.003.p - 70 ms 20 ms

Fig. 1. Performance results. The formulas are fetched from the TPTP library (version 3.0.1). An open
entry (−) means that this problem was not solved within one hour.

4 Conclusion

This paper has considered how deduction strategies may be prototyped and com-
pared for calculi specified in rewriting logic. The reflective property of rewriting
logic provides a conceptually clear distinction between the rules of the calcu-
lus and the deductive strategies of the proof search. We have illustrated the
approach by providing a rewriting logic specification of a calculus for the con-
nection method and defining two different search strategies for this calculus. A
similar calculus for the first-order language without equality has also been spec-
ified and similar strategies have been defined [8]. Although the explicit represen-
tation of variable unification and backtracking makes the specification slightly
more demanding, the gain from experimentation with search strategies should
increase with the complexity of the language.

The main advantage gained by this approach to prototyping automated deduc-
tion systems is that rewriting logic’s reflective property gives us full flexibility
to experiment with strategies relative to a calculus, as the two levels are not in-
termixed. Consequently, the approach seems well-suited for prototyping search
strategies before porting a deductive system to a low-level efficient implementa-
tion, where the two levels are most often intermixed.

Acknowledgment
We are grateful for several helpful comments from Jens Otten.

References

1. P. B. Andrews. Refutations by matings. IEEE Transactions on Computers, C-25:193-214, 1976.
2. B. Beckert and J. Posegga: leanTAP: Lean, Tableau-based Deduction. Journal of Automated

Reasoning, Vol. 15, No. 3, 339-358, 1995.
3. W. Bibel. An approach to a systematic theorem proving procedure in first order logic. Computing

12:43-55, 1974.
4. W. Bibel and J. Otten. leanCoP: lean connection-based theorem proving. In Proceedings of the

Third International Workshop on First-Order Theorem Proving, pages 152–157. University of
Koblenz, 2000.

5. M. Clavel and J. Meseguer. Reflection in Conditional Rewriting Logic. Theoretical Computer
Science. 285, 2, 245-288, 2002.

6. M. Clavel, Reflection in Rewriting Logic, Metalogical foundations and Metaprogramming Appli-
cations, CLSI publications, 2000.

7. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer and C. Talcott. Maude
Manual, 2004.

8. B. Holen. A Reflective Theorem Prover for the Connection Calculus. MSc thesis, Dep. of Infor-
matics, University of Oslo, 2005.

9. T. McCombs. Maude Primer, 2003.
10. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer

Science. 96, 73–155, 1992.
11. J. Otten. ileanTAP: An Intuitionistic Theorem Prover. International Conference TABLEAUX’97,

LNAI 1227, pages 307-312. Springer Verlag, 1997.
12. J. Otten and H. Mantel. linTAP: A Tableau Prover for Linear Logic. International Conference

TABLEAUX’99. LNAI 1617, pages 217-231, Springer Verlag, 1999.
13. Maude web-site: http://maude.cs.uiuc.edu/

