
FSEN 2005

Validating Behavioral Component
Interfaces in Rewriting Logic

Einar Broch Johnsen, Olaf Owe, and Arild B. Torjusen1

Department of Informatics, University of Oslo, Norway

Abstract

Many distributed applications can be understood in terms ofcomponents interacting in an
open environment such as the Internet. Open environments are subject to change in unpre-
dictable ways, as other applications may arrive, evolve, ordisappear. In order to validate
components in such environments, it can be useful to build a simulation environment which
reflects this highly unpredictable behavior. In this paper,the validation of components with
respect to behavioral interfaces is considered. Behavioral interfaces specify semantic re-
quirements on the observable behavior of components, expressed in an assume-guarantee
style. In our approach, a rewriting logic model is transparently extended with the history
of all observable communication, and metalevel strategiesare used to guide the simulation
of environment behavior. Over-specification of the environment is avoided by allowing ar-
bitrary environment behavior within the bounds of the assumption on observable behavior,
while the component is validated with respect to the guarantee of the behavioral interface.

Key words: Validation, components, behavioral interfaces, simulation
strategies, rewriting logic, meta-programming

1 Introduction

This paper suggests an application of rewriting logic [17] to test the behavior of
software units inopen distributed environmentssuch as the Internet. An open en-
vironment is an environment in which various other softwareunits exist, and little
or no information about these units is available. A distributed environment is an
environment in which communication is asynchronous. Reasoning in this setting is
intrinsically difficult, partly due to the non-determinismcaused by distribution, but
more characteristically due to the unknown and evolving open environment.

It is a major challenge to predict the behavior of componentsevolving in open
distributed environments, in order to ensure and maintain behavioral properties
concerning safety, availability, quality of service, robustness, and fault tolerance.
Formal approaches to system verification, such as Hoare logic, type checking,

1 Email: einarj@ifi.uio.no,olaf@ifi.uio.no,aribraat@ifi.uio.no

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Johnsen, Owe, and Torjusen

and model checking, depend on knowing the implementation details of the sys-
tem components, including those in the open environment. Approaches based on
testing simulate an environment in which the system can be subjected to test runs.
In contrast to verification methods, testing cannot generally ensure that compon-
ents are always well-behaved, but testing may still give revealing insights into a
component’s behavior. However, the problem of conformancetesting for software
units in open distributed environments is not resolved [25]. This paper shows how
open environments can be mimicked by underspecified formal descriptions based
on observable behaviorin order to validate the behavior of software units in open
distributed environments at the modeling level. Model-based testing in the early
development stages makes the testing process more effective [19].

Object orientation is the leading framework for concurrentand distributed sys-
tems, recommended by the RM-ODP [12] and used in, e.g., .Net and Corba. In
this paper, we model distributed components by objects which asynchronously ex-
change messages. The models are executable in the rewritinglogic system Maude
[4], which has facilities for simulation, model checking, andverification. To allow
black-box validation, we use requirement specifications interms of observable be-
havior. Observable behavior is specified usingbehavioral interfaces[13,14] which
describe component services available to the environment.

This paper defines an executable framework for validating the observable be-
havior of models in the open distributed setting. For this purpose, behavioral in-
terfaces are captured in rewriting logic and combined with astandard rewriting
logic model of asynchronously communicating objects. Furthermore, the execut-
able platform in Maude is extended with validation facilities in a transparent way.
Rewriting logic isreflective[3,5] in a mathematically precise manner: it is pos-
sible to reason formally about reflective rewriting inside rewriting logic itself, and
to execute reflective specifications at the Maudemetalevel. The use of reflection is
essential to our approach, allowing for guided search and system monitoring in a
modular, composable, and hierarchical way. Reflection may be used to define ex-
ecution strategies for an executable object model, for example anon-deterministic
execution strategy is proposed in [15]. Reflective specifications support a layered
architecture where several specifications may be given at each level. Reflection can
be used to extend a system model with, e.g., logging facilities [24]. In this paper,
we transparently extend an executable specification with its history of observable
communications at the metalevel, and define execution strategies at the metalevel
which are guided by requirements on the communication history. One strategy is
used to mimic open environments and another to test the executable model. The
two strategies are combined in order to enable an assume-guarantee style model-
based testing of components with respect to their behavioral interfaces.

Paper overview:Sect.2 presents a formalism for behavioral interfaces. Sect.3
presents rewriting logic and the Maude tool. Sect.4 develops metalevel strategies
for monitoring and testing executable Maude models. A strategy for simulation of
open environments is presented in Sect.5 and it is shown how this can be utilized
in a test scenario. Sect.6 discusses related and future work.
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2 Behavioral Interfaces

An open distributed system (ODS) can be represented by components or objects
that run in parallel and communicate asynchronously by means of remote method
calls. The implementation details of the components may be unknown, in which
case reasoning must rely on abstract specifications of the system’s components. We
assume that components come equipped withbehavioral interfacesthat instruct
us on how to use them. As a component may be used for multiple purposes, it
can come equipped withmultiple interfaces. This section presents a formalism for
viewpoints based on a notion of generic interface with behavioral requirements,
restricted to safety aspects. For further details about this work, see [13,14].

Black-box specifications of concurrent components may be expressed in terms
of observable behavior, i.e., the time sequence of input and output to the com-
ponents. This fits well with the notion of encapsulation; only visible operations
are considered at the specification level. An execution can be represented by a se-
quence of communication events, which is infinite in the caseof non-terminating
executions. However, infinite sequences are not easy to reason about. To avoid
infinite sequences, specifications may be expressed in termsof the finite initial
segments of the executions, capturing the abstract states of components during ex-
ecution. These sequences are commonly referred to as histories [6] or traces [11].
Prefix-closed sets of executions express safety propertiesin the sense of Alpern and
Schneider [1].

Finite sequences.We consider an abstract data typeSeq[T] of finite sequences
parameterized by a typeT. Functions over sequences will be defined by means
of convergent sets of equations, using the empty sequence,ε, and right append,
_;_ :Seq[T]×T → Seq[T], as sequence constructors. We let “_” denote argument
positions of functions with mix-fix notation.

We define projection, _/_ : Seq[T]×Set[T]→ Seq[T], and an “ends with” rela-
tion, _ew_ : Seq[T]×Set[T]→ Bool, using one equation for each constructor case:

ε/S= ε ε ew S= false
(t;x)/S= if x∈ S then (t/S);x elset/S (t;x) ew S= x∈ S

The notation #t denotes the length of a sequencet and is defined in a similar way.

2.1 Semantics

Let Ob be an unbounded set of object identifiers. LetData be a set of data values,
includingOb. In this paper, we conventionally leto1,o2 ∈ Ob. A communication
eventhas the form

msgfrom o1 to o2

wheremsgconsists ofData. This term is considered anoutput eventof o1 and an
input eventof o2. For observable events,o1 ando2 are distinct. The sets of observ-
able input and output events of an objecto are denotedINo andOUTo, respectively,
and are by definition disjoint. Their union is denotedINOUTo.
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An alphabetfor an objecto is a subset ofINOUTo. An alphabet ofo may cover
certain aspects of the communication ofo. In the next section we introduce syntax
for statically defined alphabets. Atrace setTα ⊆ Seq[α] is a prefix-closed set of
well-formed sequences.

Definition 2.1 A specificationΓ is a triple〈o,α,T 〉 where (1)o∈ Ob is an object
identifier, (2)α is a possibly infinite alphabet foro, and (3)T is a trace set overα.

For any specificationΓ, we can derive acommunication environmentE(Γ) of
objects communicating with the object ofΓ. In an ODS setting, we generally think
of the communication environment as unbounded. Since the specificationΓ does
not need to cover all aspects of the behavior ofo, we say thatΓ is an interface
specification(of o).

In the following we consider object-oriented distributed systems where com-
munication is achieved through remote methods calls. In order to achieve asyn-
chronous communication, we model a method call through two events: the event
representing the initiation of a call, and the event representing its completion. Let
Mtd be an unbounded set of method names, and letm∈ Mtd. For a call byo1 to
methodmof o2, the initiation event is generated by the callero1 and is represented
by invoc(m) from o1 to o2, and the completion event is generated by the calleeo2

and represented bycomp(m) from o2 to o1. To simplify the exposition, we abstract
from parameter values in this paper. In order to increase readability, we represent
these events byo1→o2.m ando1←o2.m, respectively.

As we consider asynchronously communicating objects, a caller may commu-
nicate while (passively) waiting for a completion and a callee may communicate
while performing a method. Consequently, other events can be observed in between
the initiation and completion of any given call. When we consider the history of
observable behavior, every completion event must be preceded by a corresponding
invocation, which gives rise to the following notion of well-formedness for com-
munication histories:

wf(ε) = true
wf(t;(o→o′.m)) = wf(t)
wf(t;(o←o′.m)) = wf(t)∧#(t/o→o′.m)≥ #(t/o←o′.m)

where #(t/o→o′.m) is the length of the tracet restricted to invocation events of the
methodm from o to o′, and similarly for completion events.

Definition 2.2 A specification〈o,α,T 〉 of o refinesanother specification〈o,α′,T ′〉
of o if α′ ⊆ α and∀t ∈ T . t/α′ ∈ T ′.

Thus, refinement corresponds to the subset relation on projected trace sets in
the sense that{t/α′ | t ∈ T } ⊆ T ′. Note that a specification may refine several
specifications with (partially) disjoint alphabets. The composition of specifications
may be introduced to define partial components or system aspects in the sense of
distributed services [13,14].
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2.2 Syntax

Interface specifications may be given in a generic manner. Generic specifications
are referred to asbehavioral interfaces. An object may support a number of inter-
faces. As Maude does not provide a syntax for specification ofobservable behavior,
statically defined alphabets, nor methods (not even with Full Maude), we introduce
a syntax for observable behavior by means of object-oriented interfaces:

interface F (〈context parameters〉)
inherits F1,F2, . . . ,Fm

begin
with cointerface

op m1(. . .)
. . .

op mn(. . .)
spec<formula on local trace>
where <auxiliary function definitions>

end

Interfaces can have context parameters, which typically describe the minimal
environment, representing static links needed by objects that support the interface.
An initiation and a completion event is associated with eachmethod declaration
(ranging over method parameters, which are ignored in this paper). In the specific-
ation formula, the keyword “this” denotes the object supporting the interface.

Mutual dependency.Let objects be typed by interfaces. By identifying a type
for the caller, thecointerface, we restrict the objects that may call the methods of
this interface, while allowingthis object to call cointerface methods. This opens
up for interaction with a caller during execution of a method. In an implementa-
tion language, access to thecaller may be provided by an explicit parameter as in
Maude, or implicitly as in Creol [15]. Cointerfaces give strong typing in an asyn-
chronous setting. Semantically a cointerface declarationaugments the alphabet of
the interface, as events related to cointerface methods areadded.

Inheritance. Multiple inheritance is allowed for interfaces, but cyclicinherit-
ance graphs are not allowed. In a subinterface, additional methods and behavioral
constraints can be declared. A cointerface restriction applies to the locally declared
methods. If an interfaceF is declared with an inheritance clause, the alphabets of
the super-interfaces are included in the alphabet ofF. Trace sets are inherited by
intersection, when restricted to the relevant alphabets ofthe super-interfaces. Thus,
an interface will always refine its super-interfaces.

Definition 2.3 Theinterface alphabetof an objecto with respect to an interfaceF,
denotedαo:F , is defined as the set of events of the form

(i) invoc(m) from o′ to o andcomp(m) from o to o′ for m declared inF,

(ii) invoc(m) from o to o′ andcomp(m) from o′ to o for mdeclared in (or inherited
by) the cointerface, and

(iii) any event inαo:F ′ whereF ′ is a super-interface ofF.
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Definition 2.4 Let F,F1, . . . ,Fn be interfaces with corresponding specification pre-
dicatesP,P1, . . . ,Pn and leth range over histories. IfF inheritsF1, . . . ,Fn, theinter-
face specificationof F is the conjunctionP(h)∧P1(h/αthis:F1)∧ . . .∧Pn(h/αthis:Fn).

Assume-guarantee predicates.In ODS, the environment in which an object ex-
ists is subject to change, and specifications are relative toan assumed behavior of
the environment. We adapt the assume-guarantee specification style [16] to the
setting of observable behavior. Assumptions should express restrictions on the
inputs and guarantees on the outputs. However, it is often difficult to formulate
assumptions and guarantees separately, since requirements to outputs may depend
on earlier input, and requirements to inputs may depend on earlier output. Instead
we use a single predicateP which relates input and output events, and extract an
assumption part and a guarantee part fromP:

Definition 2.5 Let IN and OUT denote the sets of input and output events for
this interface. Anassume-guaranteepredicate is derived from the specification
specP(h), where the assumption partA and the guarantee partG are defined by the
equations

A(ε) = true
A(h;x) = A(h)∧ (x∈ IN ∧P(h)⇒ P(h;x))
G(ε) = true
G(h;x) = G(h)∧ (A(h;x)⇒ P(h;x))

The trace set given by the specificationspecP(h) is {h |G(h)}.

Note that both sets{h |G(h)} and{h |A(h)} are prefix-closed, and that their
intersection is the largest (prefix-closed) trace set contained in{h |P(h)}.

Assumptions are the responsibility of the objects in the environment. The as-
sumption part ensures that each input is acceptable, assuming no earlier violation.
Guarantees are the responsibility of the object supportingthe interface; they are
guaranteed when the assumption holds. The guarantee part ensures that each out-
put is acceptable, assuming the assumption holds. Thus, an actual environment is
required to refine the trace set given byA, and an implementation of the interface
is required to refine the trace set given byG.

2.3 Example: A Minimal Interface

Behavioral interfaces are illustrated through the exampleof the dining philosoph-
ers. A table object informs a philosopher of the identity of the philosopher’s left
neighbor and provides units of food. A philosopher may borrow and return its
neighbor’s chopstick. Interaction between the philosophers and the table is restric-
ted by interfaces. This results in a clear distinction between internal methods and
methods externally available to other objects typed by thecointerface. Here, each
philosopher owns one chopstick and must borrow another froma neighbor before
eating. Hence, philosophers have both active and passive behavior. Strong typing
and cointerfaces guarantee that only philosophers may callthe methodsborrow-
Stick andreturnStick.
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interface Phil interface Table
begin begin
with Phil with Phil

op borrowStick op seat(out neighbor:Phil)
op returnStick op eat
〈specification〉 end

end

Denote bycaller an arbitraryPhil object in the environment ofthis Phil object, as
required by the cointerface. The alphabet ofPhil is given by the events:

caller→ this.borrowStick caller← this.borrowStick
this→ caller.borrowStick this← caller.borrowStick

and similar events forreturnStick. We define the following specification inPhil:

spec 0≤ lent(h)≤ 1∧0≤ borrowed(h)+ requested(h)≤ 1
where lent(h) = #(h/← this.borrowStick)−#(h/→ this.returnStick)

borrowed(h) = #(h/this← borrowStick)−#(h/this→ returnStick)
requested(h) = #(h/this→ borrowStick)−#(h/this← borrowStick)

Here, lent captures the number of sticks lent to neighbors,borrowed the number
of sticks the object has borrowed from its neighbors, andrequestedcaptures the
number of unfulfilled borrow requests. The three functions are defined in terms
of the history of observable behavior up to present time. Thespecification implies
that a single boolean variable suffices to keep track of sticks given away. Thus, the
assumption part of the specification reduces to

APhil(h;x) = APhil(h)∧ (x∈ {→ this.returnStick} ⇒ lent(h) > 0)

stating that the environment may not return more sticks thanit has borrowed.
The two interfaces above are connected by introducing an interfaceEatingPhil,

inheritingPhil and with aTableas a parameter, thereby providing initial environ-
mental knowledge. The specification ofPhil is strengthened by requiring that a
philosopher must have two sticks to eat:

interface EatingPhil(table: Table) inherit Phil
begin

spec eating(h)⇒ lent(h) = 0∧borrowed(h) = 1
where eating(h) = #(h/this← eat) > #(h/this→ eat)

end

Here,eating is true whenthis object is capable of eating. This interface does not
strengthen the assumption inherited fromPhil, i.e.,AEatingPhil(h) = APhil(h) = ∀h′≤
h · lent(h′)≥ 0.
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3 Rewriting Logic and Maude

This section gives a brief introduction to rewriting logic [17] and Maude [4]. A re-
write theory is a 4-tupleR = (Σ,E,L,R), where the signatureΣ defines the function
symbols of the language,E defines equations between terms,L is a set of labels,
andR is a set of labeled rewrite rules. From a computational viewpoint, a rewrite
rule t −→ t ′ may be interpreted as alocal transition ruleallowing an instance of
the patternt to evolve into the corresponding instance of the patternt ′. Rewrite
rules apply to fragments of a state configuration. If rewriterules may be applied to
non-overlapping fragments of the configuration, the transitions may be performed
in parallel. Consequently, rewriting logic (RL) is a logic which easily captures
concurrent change. A number of concurrency models have beensuccessfully rep-
resented in RL [4,17], including Petri nets, CCS, Actors, and Unity.

Informally, a state configuration in RL is a multiset of termsof given types,
specified in (membership) equational logic(Σ,E), the functional sublanguage of
RL which supports algebraic specification in the OBJ [10] style. Memberships
express that a term belongs to a given sort. When modeling computational systems,
configurations may include different system components modeled by terms of the
different types defined in the equational logic. An RL objectis a term〈O : C | a1 :
v1, . . . ,an : vn〉, whereO is the object’s identifier,C is its class, theai ’s are the names
of the object’s attributes, and thevi ’s are the corresponding values [4].

RL extends algebraic specification techniques with rewriterules to capture the
dynamic behavior of a system, supplementing the equations defining the term lan-
guage. Assuming that all terms can be reduced to normal form,rewrite rules trans-
form terms modulo the equations ofE. Rewrite rules may have a condition (a con-
junction of rewrites, equations, and memberships) which must hold for the main
rule to apply. Each rule describes how a part of a configuration can evolve in one
transition step:

rl [label] :subconfiguration−→ subconfiguration
crl [label] :subconfiguration−→ subconfigurationif condition

An unconditional rule with anif-then-elseexpression as the right hand side may al-
ternatively be given as two complementary conditional rules. Rules in RL may be
formulated at a high level of abstraction, closely resembling a compositional oper-
ational semantics [18]. The Maude system supports analysis of RL specifications.

3.1 Reflection and The Maude Metalevel

Rewriting logic is reflective in the sense that there is a finitely presented rewrite
theoryU that isuniversal: any finitely presented rewrite theoryR (including U

itself) can be represented inU. Let C andC′ be configurations andR be a set of
rewrite rules. We writeR ⊢C→C′ to express thatC may be rewritten toC′ in the
rewrite theoryR . Informally, a configurationC and the setR of rewrite rules of a
specification in RL may be represented by termsC andR at the metalevel. Using
this notation, we have the equivalence [3]:
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rl [req-stick] : 〈X : Ob|hungry: true, myS: yes, nbrS: no, : nbr : Y〉 −→

〈X : Ob|hungry: true, myS: yes, nbrS: req, nbr : Y〉 (invoc(’borrowStick) from X toY) .

rl [borrow] : 〈X : Ob|hungry: false, myS: yes, nbrS: s, nbr : Y〉
(invoc(’borrowStick) from Z to X) −→

〈X : Ob|hungry: false, myS: no, nbrS: s, nbr : Y〉 (comp(’borrowStick) from X to Z) .

rl [rcv-stick] : 〈X : Ob|hungry: true, myS: yes, nbrS: req, nbr : Y〉
(comp(’borrowStick) from Y to X) −→

〈X : Ob|hungry: true, myS: yes, nbrS: yes, nbr : Y〉 .

rl [eat-req] :〈X : Ob|hungry: true, myS: yes, nbrS: yes, nbr : Y〉 −→

〈X : Ob|hungry: true, myS: yes, nbrS: yes, nbr : Y〉 (invoc(’eat) from X to ’table) .

rl [eat] : 〈X : Ob|hungry: true, myS: yes, nbrS: yes, nbr : Y〉
(comp(’eat) from ’table toX) −→

〈X : Ob|hungry: false, myS: yes, nbrS: no, nbr : Y〉 (invoc(’returnStick) from X to Y) .

Figure 1. Rewrite rules capturing philosopher behavior.

R ⊢ C → C ′⇔U ⊢ 〈R ,C 〉 → 〈R ,C ′〉,

which states that if a termC can be rewritten to a termC′ in the rewrite theory
R , then the meta-representation ofC in R , 〈R ,C〉, can be rewritten to the meta-
representation ofC′ in R , 〈R ,C′〉, in the universal rewrite theoryU, and vice versa.
Maude includes facilities to meta-represent a rewrite theory R and to apply rules
from R to the meta-representation of a termC by so-calleddescent functions.

Metalevel rewrite rules may be used to select which rule fromR to apply to
which subterm ofC. This is done by defining an interpreter function which takes
as arguments a finitely presented rewrite theoryR , a termC, and a deterministic
strategyS. Metalevel rewrite rules may further be used to modify a configuration or
the rule set of a rewrite theory. Hence, metalevel rewritingcan be used as a wrapper
around a rewrite theoryR in order to abstractly mimic a more elaborate rewrite
theoryR ′ extendingR . Further details on the theory and the use of reflection in
RL and Maude may be found in [3,4,5].

3.2 Example: Implementation of the Philosophers

We introduce a Maude specification which implements theEatingPhil specifica-
tion given in Sect.2.3. Let O be a variable ranging overOb, a philosopher object is
defined as a RL object〈O : Ob|hungry: _,myS: _,nbrS: _,nbr : _〉. The Boolean at-
tributehungry indicates whether the philosopher is hungry, the attributesmyS and
nbrS indicate the status of its chopsticks (yes,no,req), used to impose synchroniz-
ation constraints on the specification, andnbr identifies the neighbor.

The philosopher interacts asynchronously with the environment by message
passing. Internal actions are represented by a philosopher(asynchronously) passing
messages to himself. A selection of rules from the specification is given in Fig.1.
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crl [exec-monitor] :
〈M : MetaRep|curTerm: T,curModule: MOD, labels: L LS, failedRules: FR〉
〈History : H〉 −→

if RES :: Result4Tuplethen
〈M : MetaRep|curTerm: getTerm(RES),curModule: MOD, labels: LS L,

failedRules: nil〉
〈History : H ; getNewMessages(T, getTerm(RES), MOD, H)〉

else
〈M : MetaRep|curTerm: T,curModule: MOD, labels: LS L, failedRules: FR L〉
〈History : H〉 fi

if RES:= metaXapply([MOD], T, L, none, 0, unbounded, 0)∧ #FR≤ #LS.

Figure 2. The metalevel rewrite strategySmonitor records the communication history. The
membershipRES :: Result4Tupleexpresses that the rewrite bound toRESsucceeds, using
a condition of the formRES:= term to bind a term toRES.

4 Monitoring and Testing Executable Models

The observable behavior of an executable model can be monitored by recording the
communication historyfrom an execution of the model: This can be donetranspar-
entlywith the aid of the Maude metalevel without modifying the original specifica-
tion. We can further test that the execution conforms to the behavioral specification
of the model by defining metalevel predicates that operate onthe recorded history
and block execution if a violation occurs.

To execute a specification at the metalevel, we develop a custom strategy; i.e.,
rewrite rules which apply to the meta-representation of themodel. Thus the current
state may be inspected in-between rewrites. This enables usto record a communic-
ation history while executing a specification: We can check whether the application
of a rewrite rule results in the emission of a new message by comparing the meta-
level representations of the configuration before and afterthe rule application.

The object〈M : MetaRep| curTerm: _,curModule: _, labels: _, failedRules: _〉 is
used to store the information needed to control consecutivemetalevel rewrites.
curTerm contains the meta-representation of the current configuration, curMod-
ule is the meta-representation of the name of the object-level module in which the
rewrites will be performed,labels is a list of rule labels from this module, and
failedRulescontains a list of labels for rules that are not applicable tocurTerm.

The object〈History : _〉 has an attributeh which contains the actual communic-
ation history recorded at runtime as a message list. This object is distinct from the
objects of the object-level model and is consequently not modified by nor needed
for the application of any rewrite rule from the object-level specification.

The custom strategySmonitor is implemented as a conditional rewrite ruleexec:
MetaRep×History→MetaRep×History (see Fig.2). The actual rewriting is done
by the built-in Maude functionmetaXapply, which returns a tuple from which the
rewritten term is obtained usinggetTerm. Note that whitespace in Maude denotes
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list concatenation: IfL is a label andLS is a list of labels, thenL LS is a non-
empty list of labels. The strategy applies rules from thelabelslist to the metalevel
configuration incurTermin a round-robin fashion. (A position-fair strategy for ran-
dom rule selection based on a pseudo-random number generator is given in [15].)
If no rule is applicable, the execution will terminate. The auxiliary function get-
NewMessagescompares the termT to the new system configuration, i.e., the result
of applying the rule labeledL to T. If there are new communication messages in the
new system configuration, the attributeh of the history object is extended with the
new messages. If there are several new messages, these are caused by concurrent
actions and may therefore be added to the history in an arbitrary order.

The strategyStest is defined by extendingSmonitor with functionality to check
whether a given rule application will lead to an illegal state, as specified by a pre-
dicate parameter. We consider predicates on communicationhistories as defined by
behavioral interfaces. To obtain a compositional system, the predicate on the global
history will be formulated as the conjunction of the requirement specifications of a
number of behavioral interfaces, possibly associated withdifferent objects. Beha-
vioral specifications for specific objects are represented by predicates on the global
history, restricted to an appropriate subset of possible communication events.

The Stest strategy blocks further execution once the system attemptsto reach
an illegal state violating the predicate on the global history. To test a particular
objecto against a behavioral specification〈o,α,Tα〉, the testing predicate can be
expressed asP(h) = h/α ∈ Tα. For behavioral requirements given as a predicate
P : Seq[α]→Bool, defined by a convergent set of equations, membership in the trace
set is effectively computable by reducingP(h/α) for the current global historyh.

TheStest strategy is implemented in Maude by extending the conditional exec
rule with a branch which checks the given predicate between each rewrite step and
blocks execution if the predicate is violated. A Maude function CheckPredicate:
Pred×MsgList→ Bool is used for this purpose. A predicate is specified using a
constantH which acts as a placeholder for the actual communication history. At
run-timeCheckPredicateparses the predicate specification against the actual his-
tory, calls any auxiliary predicates, and returns a booleanvalue indicating whether
the history after the rewrite step would be in compliance with the predicate or not.
If the execution is blocked by the strategy, the recorded history provides an error
trace for the system run, describing how the specification was violated.

Example. The acceptable behavior of a philosopher behaving according to the
EatingPhil interface (Sect.2.3) can be expressed by a Maude operatorAccBeh:

eqAccBeh(nil)= true
eqAccBeh(H ; MSG from X to Y)= P(H/X ; MSG from X to Y)

whereP is the specification predicate of theEatingPhil interface, and where the
notationh/X abbreviatesh/INOUTX. SinceP in the Maude specification is a
global predicate that spans all objects, there is no need to pass theobject identi-
fier as a separate parameter toAccBeh. In addition, sinceAccBeh is checked for
each input and output event incrementally, we do not need to use the guarantee and
assumption parts defined in Sect.2.2.
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5 Simulation of Open Environments for Testing

An open environment can besimulatedsuch that the behavior of abstract objects
is exclusively defined by the behavioral interfaces. Interface assumptions on the
observable behavior may be used to generate arbitrary environment behavior within
the limits imposed by the assumption predicate.

5.1 Syntactic Simulation of Open Environments

At the object-level, a rewrite theory is used to syntactically simulate the unknown
environment. In an open environment, objects may be createdand destroyed dy-
namically during execution. To mimic the open environment,we define a term
containing a setabsIDsof (abstract) object identifiers representing objects which
may currently interact with the system:〈E : Envir |absIDs: _,sysIDs: _,seed: _〉. The
setabsIDswill be used to generate input messages to the objects of the system.
System objects are represented as a setsysIDsof pairsObj×Set[Mtds]which con-
sist of object identifiers and sets of method names corresponding to the alphabets
of the object’s interfaces. The messages emitted by abstract objects are input to the
real objects of the system. Theseedattribute is used for message generation.

In order to produce arbitrary but syntactically correct input to the system from
objects in the environment, we need to select an objecto from sysIDsand produce a
message too (either calling a method available in the interface ofo or replying to a
call fromo found in the history). For this purpose, we use a pseudo-random number
generator [15] and let the functionnext: Nat→ Nat produce new seed values for
the environment. Let the functiongenMsg: Obj×Obj×Set[Msg]×Nat→ Msg
generate a new messagemsg to an objecto with alphabetα in the system from
an object in the environment, such thatmsg∈ α. The rewrite rule for message
generation is given by:

rl [msg-gen] : 〈E : Envir|absIDs: o1 A,sysIDs: (o2,α)C,seed: X〉 −→

〈E : Envir|absIDs: o1 A,sysIDs: (o2,α)C,seed: next(X)〉genMsg(o1,o2,α,X)

5.2 Semantic Simulation of Open Environments for Testing

At the metalevel, a rewrite theory is used to semantically simulate the unknown en-
vironment. Minimal behavioral requirements for open environments are given by
assumptions in the system interfaces. Define a metalevel strategySrestrict which re-
strictsa rewrite system to behave according to a predicate on observable behavior.
This strategy is similar toStest, but whereStest halts the execution when the applic-
ation of an enabled rule would violate the predicate,Srestrict tries another enabled
rule from thelabelslist of theMetaRepobject instead. Open environments do not
terminate; if no rewrite rule is applicable to any position of curTerm, the strategy
changes the seed value and retries the rules.

The abstract environment specification can now be used as atestbedfor an ac-
tual programmed component (see Fig.3). Let R1 be an object-level set of rewrite
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Rule set: Configuration:

Metalevel
rewrite system:

Srestrict(P1(h/α1))

∧ Stest(P2(h/α2))

R1∪R2,(C1 C2),

〈History : h〉

↓ Control ↑ History logger

Object level
rewrite system:

R1∪R2 C1 C2

Figure 3. Reflective testing of observable behavior in open environments.

rules generating (and possibly garbage collecting) messages. Rules fromR1 may
be applied to a configurationC1 consisting of anEnvir object. LetR2 be the object-
level set of rewrite rules applicable to the concrete objects in a configurationC2,
e.g., the given component, with synchronization constraints on the internal state.
Let α1 andα2 be alphabets associated with the objects ofC1 andC2, respectively,
such thatα1 ⊆ α2. Let P1 andP2 be predicates observationally specifying the en-
vironment and actual component, respectively. If several interfaces are considered,
P1 will be the conjunction of assumptions andP2 the conjunction of guarantees,
restricted to the relevant alphabets. The metalevel strategy Srestrict restricts rule ap-
plication fromR1 to acceptable environment behavior, providing an abstract, open
environment which may behave in any way that does not violatethe predicateP1.
We here combine two metalevel strategies which react differently to the violation
of predicates:Srestrict will restrict rule application so that the communication his-
tory conforms to the predicate, andStestwill halt the execution and produce an error
object if the predicate does not hold. By specifying one predicate that spans only
messages from the objects of the component, and one that spans all objects, and
executing the former withStest and the latter withSrestrict, we can test whether the
programmed component executes correctly provided that theenvironment does so.

5.3 Execution of the Philosopher Example

This test scenario was implemented in Maude by defining a metalevel rewrite rule
exec-testsimilar to the rule given in Fig.2, which combines theSrestrict andStest

strategies described above. The metalevel specification was used to test the imple-
mentation of philosophers described in Sect.3.2. The test configuration consisted
of one concrete philosopher object, rules for a table object, and an environment
of 4 abstract philosophers, simulated as described in Sect.5.1. The rewrite rules
for philosopher behavior (Fig.1) were compared to thePhil interface specification
(Sect.2.3) usingStest, whereas application of themsg-genrule was restricted by
theSrestrict strategy to conform to the assumptionAPhil.

When the number of applications of theexec-testrule of this non-terminating
specification was limited to 5000, the result (after 53494167 rewrites) was a trace
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of 355 messages involving the concrete object. We observe that if rules which
violate the guarantee specification are introduced, the violation will be detected
by the strategy. Furthermore, if the environment assumptions are broken (e.g., by
replacing the assumption predicate with the vacuous assumption true), this will
cause a violation of the guarantee specification that will also be detected.

6 Related and Future Work

We do not attempt to fully survey the extensive literature onmonitoring and test-
ing here. Many previous history-based [8,19,22] and automata-based [2,21,23] ap-
proaches require specific and deterministic test cases to bedefined. In contrast, we
userandom testingand assume-guarantee specifications to capture open environ-
ments, where environment behavior is arbitrary within the bounds of an assumption
predicate. Invariant-driven strategies for Maude similarto ourSrestrict have recently
been proposed in [9], but that paper considers predicates on states rather thanob-
servable behavior and does not consider the application to open environments nor
to testing. For open environments random testing within thebounds of minimal
assumptions seems more attractive than deterministic tests.

The specifications of observable behavior considered in this paper are fairly
easy to implement in rewriting logic. The specification language considered may
be replaced by a more expressive language. For example, it would be interesting
to combine our approach to open environment modeling with linear time temporal
logic specifications on finite traces. An efficient algorithmin rewriting logic for the
verification of such formulas has been given in [20].

7 Conclusion

The main contribution of this paper is to sketch an approach to the validation of
black-box components in open environments by extending Maude models with a
notion of observable behavior and related execution strategies. The paper shows
how abstract specifications of open environments may be captured very naturally
in a rewriting logic model extended with behavioral interfaces. The behavioral
interfaces express safety requirements on the observable behavior of components.
The approach is presented within a method-based, object-oriented setting, but may
easily be adjusted to general asynchronous message passing. Due to the reflective
character of rewriting logic, supported by Maude, it is possible to define execu-
tion strategies at the metalevel. In this paper, we have usedthis facility in four
ways. First, a strategy is defined to non-deterministicallygenerate arbitrary input
to a system. Second, a strategy is defined to transparently introduce monitoring of
a set of communication events. Third, a strategy is defined torestrict system input
by semantic requirements on the observable behavior. Combining these strategies,
the arbitrary behavior of open environments may be simulated within the bounds
of minimal assumptions. The separation of object-level andmetalevel constraints
facilitates experimenting with different assumptions on the environment. The same
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approach may also be used to execute a prototype model definedby its observ-
able behavior, before deciding on its implementation details. Fourth, a strategy is
defined to test whether an executable model is well behaved with respect to se-
mantic requirements on the observable behavior. Combiningall four strategies, we
obtain abstract validation environments for models of components or distributed
applications, in which the environment is unspecified but subjected to minimal ob-
servational requirements.
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