
An Asynchronous Communication Model for Distributed Concurrent Objects

Einar Broch Johnsen and Olaf Owe
Department of informatics, University of Oslo
PO Box 1080 Blindern, N-0316 Oslo, Norway

{einarj, olaf}@ifi.uio.no

Abstract

Distributed systems are often modeled by objects that
run concurrently, each with its own processor, and commu-
nicate by synchronous remote method calls. This may be
satisfactory for tightly coupled systems, but in the distrib-
uted setting synchronous external calls seem less satisfact-
ory; at best resulting in inefficient use of processor capacity,
at worst resulting in deadlock. Furthermore, it is difficult to
combine active and passive behavior in concurrent objects.
This paper proposes a solution to these problems by means
of asynchronous method calls and conditional processor re-
lease points. Although at the cost of additional internal non-
determinism in the objects, this approach seems attractive
in asynchronous or unreliable environments. The concepts
are integrated in a small object-oriented language with an
operational semantics defined in rewriting logic, and illus-
trated by an example of a peer-to-peer network.

1. Introduction

The importance of inter-process communication is rap-
idly increasing with the development of distributed com-
puting, both over the Internet and over local networks. Ob-
ject orientation appears as a promising framework for con-
current and distributed systems, and has been recommen-
ded by the RM-ODP [19], but object interaction by means
of method calls is usually synchronous. The mechanism of
remote method calls has been derived from the setting of
sequential systems, and is well suited for tightly coupled
systems. It is clearly less suitable in a distributed setting
with loosely coupled components. Here synchronous com-
munication gives rise to undesired and uncontrolled wait-
ing, and possibly deadlock. Asynchronous message passing
gives better control and efficiency, but lacks the structure
and discipline inherent in method calls. The integration of
the message concept in the object-oriented setting is un-
settled, especially with respect to inheritance and redefin-
ition.

Intuitive high-level programming constructs are needed
to unite object orientation and distribution in a natural way.
In this paper programming constructs for concurrent ob-
jects are discussed, based on processor release points and
a notion of asynchronous method calls. Processor release
points are used to influence the implicit internal control flow
in concurrent objects. This reduces time spent waiting for
replies to method calls in a distributed environment and al-
lows objects to dynamically change between active and re-
active behavior (client and server). These concepts are ex-
plored in a small object-oriented language Creol. The op-
erational semantics of the language is defined in rewriting
logic [26] and is executable as an interpreter in the tool
Maude [11]. Our experiments suggest that rewriting logic
and Maude provide a well-suited platform for experimenta-
tion with language constructs and concurrent environments.
The suitability of the proposed language constructs for dis-
tributed object systems is motivated through integration in
an object-oriented language with a simple operational se-
mantics, while maintaining the efficiency control of asyn-
chronous message passing.

The three basic interaction models for concurrent pro-
cesses are shared variables, remote method calls, and mes-
sage passing [5]. As objects encapsulate local states, we find
inter-object communication most naturally modeled by (re-
mote) method calls, avoiding shared variables. With the re-
mote method invocation (RMI) model, an object is activ-
ated by a method call. Control is transferred with the call
so there is a master-slave relationship between the caller
and the callee. A similar approach is taken with the exe-
cution threads of e.g. Hybrid [29] and Java [18], where con-
currency is achieved through multithreading. The interfer-
ence problem related to shared variables reemerges when
threads operate concurrently in the same object, which hap-
pens with non-serialized methods in Java. Reasoning about
programs in this setting is a highly complex matter [1, 9]:
Safety is by convention rather than by language design [7].
Verification considerations therefore suggest that all meth-
ods should be serialized as done in e.g. Hybrid. However,
when restricting to serialized methods, the calling object

Proc. 2nd Intl. Conf. on Software Engineering and Formal Methods (SEFM 2004), p. 188–197, IEEE press, Sept. 2004

must wait for the return of a call, blocking for any other
activity in the object. In a distributed setting this limitation
is severe; delays and instabilities may cause much unne-
cessary waiting. A nonterminating method will even block
other method invocations, which makes it difficult to com-
bine active and passive behavior in the same object.

In this paper, method calls are taken as the communica-
tion primitive for concurrent objects in the Creol language,
and given an operational semantics reflected by pairs of
asynchronous messages, allowing message overtaking. We
do not believe that distribution should be kept transparent to
the programmer as in the RMI communication model, rather
communication in the distributed setting should be expli-
citly asynchronous. Also, separating execution threads from
objects breaks the modularity and encapsulation of object
orientation, leading to a very low-level style of program-
ming. In order to model real world systems in an object-
oriented manner, asynchronously communicating concur-
rent objects appear as a much more natural approach.

The paper is organized as follows. Section 2 outlines the
overall setting of the approach. Section 3 introduces the
Creol language, including asynchronous method calls and
processor release points. Section 4 gives an example of a
peer-to-peer network in Creol. Section 5 illustrates how ex-
plicit synchronization may be obtained when needed. Sec-
tion 6 defines the operational semantics of Creol by means
of rewriting logic. Section 7 considers related work and Sec-
tion 8 concludes the paper.

2. Background

According to the RM-ODP, we can represent compon-
ents by (collections of) objects that run in parallel and com-
municate asynchronously by means of remote method calls
with input and output parameters. Often, objects are sup-
plied by third-party manufacturers unwilling to reveal the
implementation details of their design. Therefore, reason-
ing should be done relying on abstract specifications of the
system’s components. In this setting we find specification
in terms of observable behavior particularly attractive, as-
suming that components come equipped with behavioral in-
terfaces that instruct us on how to use them. Furthermore,
a component may come equipped with multiple specifica-
tions, corresponding to different viewpoints.

Strong typing. We consider typing where two kinds of vari-
ables are declared; an object variable is typed by an in-
terface and an ordinary variable is typed by a data type.
Strong typing ensures that for each method invoca-
tion o.m(inputs; outputs), where I is the declared interface
of o, the actual object o (if not nil) will support I and the
method m will be understood. Explicit hiding of class at-
tributes and methods is not needed, because typing of
object variables is based on interfaces and only meth-

ods mentioned in the interface (or its super-interfaces) are
visible.

In order to solve the conflict between unrestricted code
reuse in subclasses, and behavioral subtyping and incre-
mental reasoning control [24, 31], we use behavioral inter-
faces to type object variables, and allow multiple inherit-
ance at both the interface and class level. Interface inherit-
ance is restricted to a form of behavioral subtyping [24],
whereas class inheritance may be used freely. Inherited
class (re)declarations are resolved by disjoint union com-
bined with an ordering of the super classes. A class may im-
plement several interfaces, provided that it satisfies the syn-
tactic and semantic requirements stated in the interfaces. An
object of class C supports an interface I if the class C im-
plements I. Reasoning control is ensured by substitutabil-
ity at the level of interfaces: an object supporting an inter-
face I may be replaced by another object supporting I or
a subinterface of I. Subclassing is unrestricted, so method
redefinition may violate semantic requirements of an inter-
face. Therefore, implementation claims (as well as class in-
variants) are not in general inherited at the class level.

Observable behavior. An object’s observable communic-
ation history, i.e. the trace of all communication events
between the object and its environment, represents an ab-
stract view of its state, readily available for reasoning about
past and present behavior. By means of a local history vari-
able, the behavior of an object is determined by its commu-
nication history up to present time. The approach emphas-
izes mathematically intuitive concepts such as generator in-
ductive function definitions and finite sequences, avoiding
fix-point semantics and infinite traces [21].

An interface may specify observable behavior in the
form of an assumption guarantee specification [23] on the
local history. The assumption is a requirement on the be-
havior of the objects in the environment. As customary
in the assumption-guarantee paradigm, the guaranteed in-
variant need only hold when the assumption is respected
by the environment. In our setting, the paradigm is adjus-
ted to deal with input and output aspects of communicat-
ing systems. The semantic requirements of an interface rely
on the present communication history of an object offer-
ing the interface, i.e. they are predicates on the finite traces.
A compositional formalism for reasoning about behavioral
interfaces, and an associated interface refinement relation,
is given in previous work [20, 21]. At the imperative level,
reasoning about class invariants in terms of class attributes
and the local history can be done locally in each class.

3. The Creol language

This section proposes programming constructs for dis-
tributed concurrent objects, based on asynchronous method
calls and processor release points. Concurrent objects are

potentially active, encapsulating execution threads; con-
sequently, elements of basic data types are not considered
objects. In this sense, our objects resemble top-level objects
in e.g. Hybrid. The objects considered have identity: com-
munication takes place between named objects and object
identifiers may be exchanged between objects. As motiv-
ated above, Creol objects are typed by interfaces, resem-
bling CORBA’s IDL, but extended with semantic require-
ments and mechanisms for type control in dynamically re-
configurable systems. As the language supports strong typ-
ing, invoked methods are supported by the called object
(when not null), and formal and actual parameters match.

3.1. Interfaces

Interfaces describe viewpoints to objects and have the
following general form:

interface F (〈parameters〉)
inherits F1,F2, . . . ,Fm

begin with G
op m1(. . .)

...
op mn(. . .)

asm <formula on local observable trace
restricted to any calling object>

inv <formula on local observable trace>
where <auxiliary function definitions>
end

where F,F1, . . . ,Fm, and G are interfaces. Interfaces may
have both value and object parameters, typed respectively
by data types and interfaces. Interface parameters describe
the minimal environment that any object offering the inter-
face needs at the point of creation. Inheritance gives rise to
concatenation of parameter lists.

For active objects we may want to restrict access to call-
ing objects of a particular interface. This way, the active
object can invoke methods of the caller and not only pass-
ively complete invocations of its own methods. Use of the
with clause restricts the communication environment of an
object, as considered through the interface, to external ob-
jects offering a given cointerface [20,21]. For some objects
no such knowledge is required, which is captured by the
keyword Any in the with clause. Mutual dependency is spe-
cified if two interfaces have each other as cointerface.

Example. We consider the interfaces of a node in a
peer-to-peer file sharing network. A Client interface cap-
tures the client end of the node, available to any user of the
system. It offers methods to list all files available in the net-
work, and to request the download of a given file from a
given server. A Server interface offers a method for obtain-
ing a list of files available from the node, and a mechan-
ism for downloading packs, i.e. parts of a target file. The

Server interface is available to other servers in the net-
work.

interface Client interface Server
begin with Any begin with Server

op availFiles op enquire
op reqFile op getLength

end op getPack
end

The with-construct allows the typing mechanism to deduce
that any caller of a server request will understand the en-
quire and getPack methods. To save space, discussion of
method parameters is postponed to Section 4. The two in-
terfaces may be inherited by a third interface Peer

interface Peer
inherits Client, Server

begin
end

which describes nodes able to act according to both the cli-
ent role and the server role.

3.2. Classes and objects

At the imperative level, attributes (object variables)
and method declarations are organized in classes, which
may have value and object parameters similar to in-
terface parameters. Objects are dynamically created
instances of classes. The attributes of an object are encap-
sulated and can only be accessed via the object’s meth-
ods. Among the declared methods, we distinguish two
methods init and run, which are given special treat-
ment operationally. The init method is invoked at object
creation to instantiate attributes and may not contain pro-
cessor release points. After initialization, the run method, if
provided, is started. Apart from init and run, declared meth-
ods may be invoked internally and by other objects
of appropriate interfaces. When called from other ob-
jects, these methods reflect passive or reactive behavior
in the object, whereas run reflects active behavior. Meth-
ods need not terminate and, apart from init, all method
instances may be temporarily suspended.

In order to focus the discussion on asynchronous method
calls and processor release points in method bodies, other
language aspects will not be discussed in detail, including
inheritance and typing. To simplify the exposition, we as-
sume a common type Data of basic data values, such as the
natural numbers Nat, strings Str, and the object identifiers
Obj, which may be passed as arguments to methods. Ex-
pressions Expr evaluate to Data. We denote by Var the set of
program variables, by Mtd the set of method names, and by
Label the set of method call identifiers. There is read-only
access to labels, in-parameters, and the special object attrib-
ute this, which is used for self reference.

3.3. Asynchronous methods

An object offers methods to its environment, specified
through a number of interfaces and cointerfaces. All in-
teraction with an object happens through method calls. In
the asynchronous setting method calls can always be emit-
ted, because the receiving object cannot block communic-
ation. Method overtaking is allowed: if methods offered by
an object are invoked in one order, the object may start the
method instances in another order. A method instance is,
roughly speaking, program code with nested processor re-
lease points, evaluated in the context of local variables.

Due to the possible interleaving of different method exe-
cutions, the values of an object’s program variables are not
entirely controlled by a method instance which suspends it-
self before completion. A method may have local variables
supplementing the object variables. In particular, the val-
ues of formal parameters are stored locally, but other local
variables may also be created. Semantically, an instantiated
method is represented by a process 〈S,L〉 where S is a se-
quence of commands and L : Var→ Data the local variable
bindings. Consider an object o which offers the method

op m(in x : Nat out y : Data) == var z : Nat= 0; S .

to the environment. Syntactically, method declarations end
with a period. Accepting a call to m with argument 2 from
another object o′ creates a process 〈S,{caller 7→ o′, label 7→
l,x 7→ 2,y 7→ nil,z 7→ 0}〉 in the object o. An object can have
several (suspended) instances of the same method, possibly
with different values for local variables. The local variables
label and caller are reserved to identify the call, allowing
the proper reply to be emitted at method termination, i.e.
when S is completed.

An asynchronous method call is made with the command
l!o.m(e), where l ∈ Label provides a locally unique refer-
ence to the call, o is an object expression, m a method name,
and e an expression list with the actual in-parameters sup-
plied to the method. The call is local when o is omitted or
evaluates to this object, otherwise remote. Labels are used
to identify replies, and may be omitted if a reply is not ex-
plicitly requested. As no synchronization is involved, pro-
cess execution can proceed after calling an external method
until the return value is actually needed by the process.

To fetch the return values from the call, say in a vari-
able list x, we ask for the reply to our call: l?(x). This com-
mand treats x as a future variable [32]. If the reply to the
call has not arrived when requested, process execution is
blocked. In order to avoid blocking in the asynchronous
case, processor release points are introduced for reply re-
quests (Section 3.4): If the reply has arrived, return values
may be assigned to x and execution continue without delay.
Otherwise, execution is suspended.

Synchronous (RMI) method calls use the syntax
o.m(e;x), which is defined by l!o.m(e); l?(x) for some

Syntactic categories. Definitions.
l in Label
g in Guard
p in MtdCall
S in ComList
C in Com
x in VarList
e in ExprList
m in Mtd
o in ObjExpr
φ in BoolExpr

g ::= wait |φ | l? |g1 ∧g2 |g1 ∨g2
p ::= o.m |m
S ::= C |C;S
C ::= skip | (S) |S1�S2 |S1|||S2

| x := e | x := new classname(e)

| if φ then S1 else S2 fi
|while φ do S od
| !p(e) | l!p(e) | l?(x) | p(e;x)

|await g |await l?(x) |await p(e;x)

Figure 1. An outline of the language syntax.

fresh label l, immediately blocking the processor while
waiting for the reply. In order to execute local calls, the call-
ing method must eventually suspend its own execution.
Therefore the reply command l?(x) will enable execu-
tion of the call identified by l when this call is local. The
language does not support monitor reentrance, mutual syn-
chronous calls may therefore lead to deadlock.

3.4. A language with processor release points

Guarded commands g are used to explicitly declare po-
tential release points await g for the object’s processor.
Guarded commands can be nested within the same local
variable scope, corresponding to a series of processor re-
lease points. When an inner guard which evaluates to false
is encountered during process execution, the process is sus-
pended and the processor released. After processor release,
any suspended process may be selected for execution.

The type Guard is constructed inductively:

• wait ∈ Guard (explicit release)
• l? ∈ Guard, where l ∈ Label
• φ ∈ Guard, where φ is a boolean expression over local

and object variables

Here, wait is a construct for explicit release of the processor.
The reply guard l? succeeds if the reply to the method in-
vocation with label l has arrived. We allow composition of
guards: g1 ∧ g2 and g1 ∨ g2 for guards g1 and g2. Evalu-
ation of guards is done atomically. We define await l?(x)
as an abbreviation for await l?; l?(x), and await m(e;x) for
l!o.m(e); await l?(x), a typical form of asynchronous com-
munication.

Guarded commands can be composed in different ways,
reflecting the requirements to the internal control flow in
the objects. Let GS1 and GS2 denote the guarded com-
mands await g1;S1 and await g2;S2. Nesting of guards is
obtained by sequential composition; in a program state-
ment GS1;GS2, the guard g2 corresponds to a potential inner

processor release point. Non-deterministic choice between
guarded commands is expressed by GS1�GS2, which may
compute S1 if g1 evaluates to true or S2 if g2 evaluates to
true. Non-deterministic merge is expressed by GS1|||GS2,
defined as (GS1;GS2)�(GS2;GS1). Control flow without
potential processor release uses if and while constructs, and
assignment to local and object variables is expressed as
x := e for (the same number of) program variables x and
expressions e. Figure 1 summarizes the language syntax.

With nested processor release points, the object pro-
cessor need not block while waiting for replies. This ap-
proach is more flexible than future variables: suspended
processes or new method calls may be evaluated while wait-
ing. If the called object does not reply at all, deadlock is
avoided in the sense that other activity in the object is pos-
sible. However, when the reply has arrived, the continu-
ation of the original process must compete with other en-
abled suspended processes.

4. Example: a peer-to-peer network

A peer-to-peer file sharing system functions across a dis-
tributed network. Servers arrive and disappear dynamically.
A client requests a file from a server in the network, and
downloads it as a series of packet downloads until the file
download is complete. The connection to the server may be
blocked, in which case the download will automatically re-
sume if the connection is reestablished. A client may run
several downloads concurrently, at different speeds. We as-
sume that every node in the network has an associated data-
base with shared files. Downloaded files are stored in this
database, which is not modeled here but implements the in-
terface DB :

interface DB
begin with Server

op getFile(in fId:Str out file: List[List[Data]])
op getLength(in fId:Str out length:Nat)
op storeFile(in fId:Str, file:List[Data])
op listFiles(out fList:List[Str])

end

Here, getFile returns a list of packets, i.e. a sequence of
sequences of data, for transmission over the network, get-
Length returns the number of such sequences, listFiles re-
turns the list of available files, and storeFile adds a file to
the database, possibly overwriting an existing file.

Nodes in the peer-to-peer network which imple-
ment the Peer interface can be modeled by a class Node.
Node objects can have several interleaved activities: sev-
eral downloads may be processed simultaneously as well
as uploads to other servers, etc. All method calls are asyn-
chronous: If a server temporarily becomes unavailable,
the transaction is suspended and may resume at any time
after the server becomes available again. Processor release

points ensure that the processor is not blocked and trans-
actions with other servers not affected.

class Node (db:DB)
implements Peer

begin
with Server

op enquire(out files: List[Str]) == await db.listFiles(;files) .
op getLength(in fId:Str out lth:Nat) ==

await db.getLength(fId;lth) .
op getPack(in fId:Str, pNbr:Nat out pack:List[Data]) ==

var f:List[Data]; await db.getFile(fId;f); pack:=f[pNbr] .

with Client
op availFiles (in sList: List[Str] out files:List[Str×Str]) ==

var s: Str, fList: List[Str];
if (sList = empty) then files:= empty
else await hd(sList).enquire(;fList);

await this.availFiles(tl(sList);files);
files:=(files; (hd(sList),fList)) fi .

op reqFile(in sId:Str, fId:Str) ==
var file, pack: List[Data], lth: Nat ;
await sId.getLength(fId;lth);
while (lth > 0) do await sId.getPack(fId, lth; pack);

file:=(file; pack); lth:=lth - 1 od; !db.storeFile(sId, file) .
end

Here, availFiles returns a list of pairs where each pair
contains a file identifier fId and the server identifier sId
where fId may be found, reqFile the file associated with
fId, enquire the list of files available from the server, and
getPack a particular pack in the transmission of a file. The
list constructor is represented by semicolon. For x : T and
s : List[T], we let hd(x;s) = x and tl(x;s)) = s, and s[i] de-
notes the i’th element of s, provided i≤ length(s).

5. Example: explicit synchronization

Creol supports high-level implicit synchronization of in-
terleaved method executions in concurrent objects. Con-
sequently, objects may be regarded as abstract monitors,
without the need for explicit signaling. Explicit signaling
is often not necessary and adds an additional level of com-
plexity for reasoning about monitors [13]. In Creol, signal-
ing is guaranteed by the semantics and is therefore not the
responsibility of the programmer. When explicit signaling
is desirable, it can be achieved by encoding monitors with
different signaling disciplines in Creol. We here present the
encoding of a class implementing general monitors with the
signal and continue discipline [5], for simplicity restricted
to one condition variable. The condition variable is encoded
as a triple 〈s,d,q〉 of natural numbers; s represents signals
to the condition variable, d the number of the delayed pro-
cess in the queue of the condition variable, and q the num-
ber of delayed processes that have been reactivated. Queues
on condition variables are FIFO ordered.

class Monitor
begin var s: Nat, d: Nat, q: Nat;

op init == s:=0; d:=0; q:=0 .
with Any

op wait == var myturn: Nat; d:=d+1; myturn:=d;
await (s>0 ∧ q=myturn); s:=s-1; q:=q+1 .

op signal == if (d-q >0) then s:=s+1 fi.
op signalAll == s:= (d-q) .

end

The counters representing the queue of the condition
variable may be reset when no processes are suspended on
the queue, by adding an additional line at the end of the wait
method: if (d=q) then d:=0; q:=0 fi.

6. An operational semantics for Creol

The operational semantics of Creol is defined using re-
writing logic [26], emphasizing simplicity and abstraction
while modeling the essential aspects of concurrency, distri-
bution, and communication. A rewrite theory is a 4-tuple
R = (Σ,E,L,R). The signature Σ defines the function sym-
bols of the language, E defines equations between terms, L
is a set of labels, and R is a set of labeled rewrite rules. From
a computational viewpoint, a rewrite rule t −→ t ′ may be in-
terpreted as a local transition rule allowing an instance of
the pattern t to evolve into the corresponding instance of the
pattern t ′. Rewrite rules apply to fragments of a state config-
uration. If rewrite rules may be applied to non-overlapping
fragments, the transitions may be performed in parallel.
Consequently, rewriting logic (RL) is a logic which eas-
ily captures concurrent change. A number of concurrency
models have been successfully represented in RL [11, 26],
including Petri nets, CCS, Actors, and Unity, as well as
the ODP computational model [28]. RL also offers its own
model of object orientation [11].

Informally, a state configuration in RL is a multiset of
terms of given types. These types are specified in (member-
ship) equational logic (Σ,E), the functional sublanguage of
RL which supports algebraic specification in the OBJ [17]
style. When modeling computational systems, configura-
tions may include the local system states, where different
parts of the system are modeled by terms of the different
types defined in the equational logic.

RL extends algebraic specification techniques with trans-
ition rules: The dynamic behavior of a system is captured by
rewrite rules, supplementing the equations which define the
term language. Assuming that all terms can be reduced to
normal form, rewrite rules transform terms modulo the de-
fining equations of E. Each rule describes how a part of a
configuration can evolve in one transition step. If several
rules can be applied to distinct subconfigurations, they can
be executed in a concurrent rewrite step. As a result, con-
currency is implicit in RL.

Conditional rewrite rules are allowed, where the con-
dition can be formulated as a conjunction of rewrites and
equations which must hold for the main rule to apply:

subconfiguration−→ subconfiguration if condition.

Rules in RL may be formulated at a high level of abstrac-
tion, closely resembling a compositional operational se-
mantics. In fact, structural operational semantics can be uni-
formly mapped into RL specifications [15].

6.1. System configurations

In the semantics, an asynchronous method call will be
reflected by a pair of messages and object activity will be
organized around a message queue which contains incom-
ing messages and a process queue which contains suspen-
ded processes, i.e. remaining parts of method instances. In
order to increase parallelism in the model, message queues
will be external to object bodies. A state configuration is
a multiset combining Creol objects, classes, messages, and
queues. As usual in RL, the associative and commutative
constructor for multisets is represented by whitespace.

In RL, objects are commonly represented by terms of
the type 〈O : C |a1 : v1, . . . ,an : vn〉 where O is the object’s
identifier, C is its class, the ai’s are the names of the ob-
ject’s attributes, and the vi’s are the corresponding values
[11]. We adopt this form of presentation and define Creol
objects, classes, and external message queues as RL ob-
jects. Omitting RL types, a Creol object is represented by
an RL object 〈Ob |Cl,Pr,PrQ,Lvar,Att,Lab〉, where Ob is
the object identifier, Cl the class name, Pr the active pro-
cess code, PrQ a multiset of suspended processes with un-
specified queue ordering, and Lvar and Att the local and ob-
ject variables, respectively. Let τ be a type partially ordered
by <, with least element 1, and let Next : τ→ τ be such
that ∀x .x < Next(x). Lab is the method call identifier cor-
responding to labels in the language, of type τ. Thus, the ob-
ject identifier and the generated label value provide a glob-
ally unique identifier for each method call. Message queues
are RL objects 〈Qu |Ev〉, where Qu is the queue identifier
and Ev a multiset of unprocessed messages. Each message
queue is a distinct term in the state configuration, associ-
ated with one specific Creol object.

Creol classes are represented by RL objects
〈Cl | Param,Att,Tok, init,Mtds〉, where Cl is the class
name, Param the list of class parameters, Att a list of at-
tributes, init the initialization method, Tok is an unbounded
set of tokens of some sort, and Mtds a multiset of meth-
ods. When an object needs a method, it is loaded from the
Mtds multiset of its class (overloading and virtual bind-
ing issues connected to inheritance are ignored here.)

In RL’s object model [11], classes are not represented
explicitly in the system configuration. This leads to ad hoc

mechanisms to handle object creation, which we avoid by
explicit class representation. The command new C(args)
creates a new object with a unique object identifier, object
variables as listed in the class parameter list and in Att, and
places the code from methods init and run in Pr.

6.2. Concurrent transitions

Concurrent change is achieved in the operational se-
mantics by applying concurrent rewrite steps to state con-
figurations. There are four different kinds of rewrite rules:

• Rules that execute code from the active process: For
every program statement there is at least one rule. For
example, the assignment rule for the program x := e
binds the value of the expression list e to x within the
lists of local and object variables.
• Rules for suspension of the active process: When an

active process guard evaluates to false, the process and
its local variables are suspended, leaving Pr empty.
• Rules that activate suspended processes: When Pr is

empty, suspended processes may be activated. When
this happens, the local variable bindings are replaced.
• Transport rules: These rules move messages into and

out of the external message queue. Because the ex-
ternal message queue is represented as a separate RL
object, it can belong to another subconfiguration than
the object itself and it can therefore receive messages
in parallel with other activity in the object.

When auxiliary functions are needed in the semantics, these
are defined in equational logic, and are evaluated in between
the state transitions [26]. The rules for the basic constructs
concerning method calls, replies, guarded commands, and
creation of new objects, are now considered in more detail.

Synchronous and Asynchronous Method Calls. In the op-
erational semantics, objects communicate by sending mes-
sages. Two messages are used to encode a method call. If an
object o1 calls a method m of an object o2, with arguments
in, and the execution results in the return values out, the
call is reflected by two messages invoc(o2,m,o1 l in) and
comp(o1, l,out), which represent the invocation and com-
pletion of the call, respectively. In the asynchronous set-
ting, the invocation message must include the reply address
of the caller, so the completion can be transmitted to the
correct destination. As an object may have several pending
calls to another object, the completion message includes a
locally unique label l, generated by the caller.

The Creol semantics handles all invocation mechanisms
by means of the primitives for asynchronous communic-
ation, i.e. asynchronous calls, reply commands, and reply
guards, and represents the synchronous call o.m(in;out) as
l!o.m(in); l?(out) for some fresh label identifier l.

When an object calls an external method, a message is
placed in the configuration. The rewrite rule for this trans-
ition can be expressed as follows, ignoring irrelevant attrib-
utes in the style of Full Maude [11]:

〈O : Ob|Pr : (Q!X .Y (I);P),Lvar : L,Att : A,Lab : N〉
−→

〈O : Ob|Pr : (Q := N;P),Lvar : L,Att : A,Lab : Next(N)〉
invoc(eval(X ,(A;L)),Y,(O N eval(I,(A;L))))

Here, eval is a function which evaluates an expression list in
the context of a list of variable bindings. Note that the caller
identity and the label value are included as actual paramet-
ers. Transport rules take charge of the message, which even-
tually arrives at the callee’s external message queue. After
method execution, a completion message is emitted into
the configuration, eventually arriving at the caller’s external
message queue.

If an invocation is found in the external message queue
of an object, the corresponding method code can be loaded
from the object’s class into its internal process queue.

〈O : Ob|Cl : C,PrQ : W 〉 〈O : Qu|Ev : Q invoc(O,M, I)〉
〈C : Cl|Mtds : MT〉
−→

〈O : Ob|Cl : C,PrQ : (W bind(M,MT, I))〉 〈O : Qu|Ev : Q〉
〈C : Cl|Mtds : MT〉
The auxiliary function bind fetches method M in the
method multiset MT of the class, and returns the method’s
code and local variables. It ensures that a completion mes-
sage will be emitted upon method termination.

In case of a remote call, the reply command blocks un-
til the appropriate reply message has arrived in the external
message queue.

〈O : Ob|Pr : (X ?(J);P),Lvar : L〉 〈O : Qu|Ev : Q comp(O,N,K)〉
−→

〈O : Ob|Pr : (J := K;P),Lvar : L〉 〈O : Qu|Ev : Q〉
if N = eval(X ,L)

In case of a local call, the reply command allows the call to
be loaded in Pr:

〈O : Ob|Pr : (X ?(J);P),PrQ : (P′,L′) W,Lvar : L〉
−→

〈O : Ob|Pr : P′;cont(label),PrQ : (await X ?(J);P,L) W,Lvar : L′〉
if eval(caller,L′) = O∧ eval(label,L′) = eval(X ,L)

Note that the language primitive cont(label) is appended
to the method code, thereby causing a LIFO discipline on
PrQ for local synchronous calls. When evaluation of the
new call is completed, the return values are placed in the
external event queue as usual and the continuation primit-
ive is evaluated:

〈O : Ob|Pr : cont(X),PrQ : 〈(X ′?;P),L′〉W,Lvar : L〉
−→

〈O : Ob|Pr : P,PrQ : W,Lvar : L′〉
if eval(X ,L) = eval(X ′,L′)

Guarded Commands. There are three types of guards rep-
resenting potential processor release points: The regular
boolean expression, a wait guard, and a return guard. Here
we will look closer at rules for evaluation of return guards
in the active process.

Return guards allow process suspension when waiting
for method completions, so the object may attend to other
tasks while waiting. A return guard evaluates to true if
the external message queue contains the completion of the
method call, and execution of the process continues.

〈O : Ob|Pr : (await X?;P),Lvar : L〉 〈O : Qu|Ev : Q〉
−→

〈O : Ob|Pr : P,Lvar : L〉 〈O : Qu|Ev : Q〉
if inqueue(eval(X ,L),Q)

where the function inqueue checks whether the completion
with the given label value is in the message queue Q.

If the message is not in the queue, the active process is
suspended. The object can then compute other enabled pro-
cesses while it waits for the completion of the method call.

〈O : Ob|Pr : (await X?;P),PrQ : W,Lvar : L〉 〈O : Qu|Ev : Q〉
−→

〈O : Ob|Pr : empty,PrQ : (W 〈(await X?;P),L〉),Lvar : empty〉
〈O : Qu|Ev : Q〉
if not inqueue(eval(X ,L),Q)

If there is no active process, the suspended process with
the return guard can be tested against the external message
queue again. If the completion message is present, the pro-
cess is reactivated.

〈O : Ob|Pr : empty,PrQ : 〈await X?;P,L′〉W,Lvar : L〉
〈O : Qu|Ev : Q〉
−→

〈O : Ob|Pr : P,PrQ : W,Lvar : L′〉 〈O : Qu|Ev : Q〉
if inqueue(eval(X ,L),Q)

Otherwise, another suspended process from the process
queue PrQ may be loaded into Pr.

Object Creation. Finally, the creation of new objects is con-
sidered. Class parameters are stored among object attrib-
utes. A new object with a unique identifier and an associ-
ated event queue are created. New object identifiers are cre-
ated by concatenating tokens from the unbounded set Tok
to the class name. The new object identifier is returned to
the object initiating the object creation.

〈O : Ob|Pr : (X := new C(I);P),Lvar : L,Att : A〉
〈C : Cl|Param : V,Att : A′, Init : (P′,L′),Tok : N〉
−→

〈O : Ob|Pr : (X := (C;N);P),Lvar : L,Att : A〉
〈(C;N) : Ob|Cl : C,Pr : (V := eval(I,(A;L));P′; run),PrQ : empty,

Lvar : L′,Att : (V ;A′),Lab : 1〉 〈(C;N) : Qu|Ev : empty〉
〈C : Cl|Param : V,Att : A′, Init : (P′,L′),Tok : Next(N)〉
In the new object, class parameter values are stored in the at-
tribute list of the class and instantiated by assignment. After

this assignment, init gets evaluated and finally, a synchron-
ous call is made to run (if present in the class).

6.3. Testing specifications in the Creol interpreter

Specifications in RL are executable on the Maude mod-
eling and analysis tool [11]. This makes RL well-suited
for experimenting with programming constructs and lan-
guage prototypes, combined with Maude’s various rewrite
strategies and search and model-checking abilities. Thus,
development of the language constructs and testing them is
done incrementally. In fact, Creol’s operational semantics
has been used as a language interpreter to test the beha-
vior of Creol programs [22]. The interpreter consists of 700
lines of code, including auxiliary functions and equational
specifications, and it has 29 rewrite rules.

Although the proposed operational semantics is highly
non-deterministic, Maude rewriting is deterministic in its
choice of which rule to apply to a given configuration. For
the evaluation of specifications of non-deterministic sys-
tems in Maude, as targeted by Creol, this limitation restricts
the applicability of the tool as every run of the specification
will be identical. However, RL is reflective [10], which al-
lows execution strategies for Maude programs to be written
in RL. A strategy based on a pseudo-random number gener-
ator is proposed in [22]. Using this strategy, it is easy to test
a specification in a series of different runs by providing dif-
ferent seeds to the random number generator.

By executing the operational semantics, Maude may be
used as a program analysis tool. Maude’s search and model
checking facilities can be employed to look for specific con-
figurations or configurations satisfying a given condition.

7. Related and future work

Related work. The Creol process commands are inspired
by notions from process algebra [27]. However, Creol dif-
fers in its integration of processes in an object-oriented
setting using methods, including active and passive object
behavior, and self reference rather than channels. Further,
Creol’s high-level integration of asynchronous and syn-
chronous communication and the organization of pending
processes and interleaving at suspension points within class
objects seem hard to capture naturally in process algebra.
UML offers asynchronous event communication and syn-
chronous method invocation but does not integrate these,
resulting in significantly more complex formalizations [14].

Many object-oriented languages offer constructs for con-
currency. A common approach has been to keep activity
(threads) and objects distinct, as done in Hybrid [29] and
Java [18]. These languages rely on the tightly synchronized
RMI model of method calls, forcing the calling method in-
stance to block while waiting for the reply to a call. Veri-

fication considerations suggest that methods should be seri-
alized [7], which would block all activity in the calling ob-
ject. Closely related are method calls based on the rendez-
vous concept in languages where objects encapsulate activ-
ity threads, such as Ada [5] and POOL-T [4].

For distributed systems, with potential delays and even
loss of communication, activity threads as well as the tight
synchronization of the RMI model seem less desirable. Hy-
brid offers delegation as an explicit construct to (temporar-
ily) branch an activity thread. Asynchronous method calls
can be implemented in e.g. Java by explicitly creating new
threads to handle calls [12]. To facilitate the programmer’s
task and reduce the risk of errors, implicit control structures
based on asynchronous method calls seem more attractive,
allowing a higher level of abstraction in the language.

Languages based on the Actor model [2, 3] take asyn-
chronous messages as the communication primitive, focus-
ing on loosely coupled processes with less synchronization.
This makes Actor languages conceptually attractive for dis-
tributed programming. Representing method calls by asyn-
chronous messages has lead to the notion of future vari-
ables which may be found in languages such as ABCL [32],
Eiffel// [8], CJava [12], and Polyphonic C] [6]. The pro-
posed reply guards further extend this view of asynchrony.

Maude’s inherent object concept [11, 26] also represents
an object’s state as a subconfiguration, but in contrast to
our approach object behavior is captured directly by re-
write rules. Both Actor-style asynchronous messages and
synchronous transitions (rewrite rules which involve more
than one object) are allowed, which makes Maude’s object
model very flexible. However, asynchronous method calls
and processor release points as proposed in this paper are
hard to represent within this model.

Future work. The long term goal of our research is to
study openness in distributed object systems. While this
paper has focused on communication aspects in the asyn-
chronous setting, we believe the language presented here
offers interesting possibilities for reasoning in the presence
of dynamic change. An obvious way to provide some open-
ness is to allow dynamic addition of new (sub)classes and
new (sub)interfaces. In our setting, this mechanism in it-
self does not violate reasoning control, in the sense that
old proved results still hold. Also, additional implementa-
tion claims may be stated and proved. However, old objects
may not use new interfaces that require new methods.

A natural way to overcome this limitation is through a
dynamic class construct, allowing a class to be replaced by
a subclass. Thus a class C may be modified by adding at-
tributes (with initialization) and methods, redefining meth-
ods, as well as extending the inheritance and implements
relationships. In order to avoid circular inheritance graphs,
C may not inherit from a subclass of C. Unlike standard
subclassing, all existing objects of class C or a subclass of

C become renewed in this case and support the new inter-
faces. Reasoning control is maintained when the dynamic
class construct is restricted to a form of behavioral subtyp-
ing, which can be ensured by verification conditions associ-
ated with the class modification [30]. Unrestricted use of the
dynamic class construct implies that objects of class C may
violate behavior specified earlier, and constraints on objects
of class C must be reproved or weakened. Furthermore, as a
special case of class modification, one may posteriorly add
super-classes to an established class hierarchy. This would
be an answer to a major criticism against object-oriented
design [16], namely that the class hierarchy severely lim-
its restructuring the system design.

Currently, reasoning control and inheritance in the set-
ting of Creol are being investigated, along with a time-out
mechanism. More elaborate case studies to test the mech-
anisms of the language are on the way. The next step in
this research will be a detailed investigation of dynamic
classes as outlined above. The run-time implementation of
dynamic class constructs is non-trivial [25], even typing and
virtual binding need special considerations. The framework
provided by rewriting logic and Maude is promising for ex-
perimentation with dynamic classes, as the semantic model
supports formal reasoning as well as execution and testing.

8. Conclusion

Whereas object orientation has been advocated as a
promising framework for distributed systems, common ap-
proaches to combining concurrency with object-oriented
method invocations seem less satisfactory. Communication
is either based on synchronous method calls, best suited
for tightly coupled processes, or on asynchronous mes-
sages, with no direct support for the abstraction and struc-
turing mechanism provided by methods in object-oriented
design. Consequently, method calls in the distributed set-
ting become either very inefficient or difficult to program
and reason about, requiring explicit low-level synchroniza-
tion of activity and communication.

In order to facilitate design of distributed concurrent ob-
jects, high-level implicit control structures are needed to or-
ganize method invocations and internal object activity. This
paper integrates remote and local asynchronous and syn-
chronous method calls, and nested processor release points
in method bodies for this purpose. The approach improves
on the efficiency of future variables and allows implicit
control of interleaved intra-object concurrency between in-
voked methods. Active and reactive behavior in an object
are thereby easily combined. The proposed interleaving of
method executions is more flexible than serialized methods,
allowing method overtaking, while maintaining the ease of
code verification lost for non-serialized methods. In fact, it
suffices that class invariants hold at processor release points.

References

[1] E. Ábrahám-Mumm, F. S. de Boer, W.-P. de Roever, and
M. Steffen. Verification for Java’s reentrant multithreading
concept. In Intl. Conf. on Foundations of Software Science
and Computation Structures (FOSSACS’02), LNCS 2303,
pages 5–20. Springer, Apr. 2002.

[2] G. A. Agha. Abstracting interaction patterns: A program-
ming paradigm for open distributed systems. In E. Najm and
J.-B. Stefani, editors, Proc. Intl. Conf. on Formal Methods
for Open Object-Based Distributed Systems (FMOODS’96),
pages 135–153, Paris, 1996. Chapman & Hall.

[3] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott.
A foundation for actor computation. Journal of Functional
Programming, 7(1):1–72, Jan. 1997.

[4] P. America. POOL-T: A parallel object-oriented language. In
A. Yonezawa and M. Tokoro, editors, Object-Oriented Con-
current Programming, pages 199–220. The MIT Press, Cam-
bridge, Mass., 1987.

[5] G. R. Andrews. Concurrent Programming: Principles and
Practice. Addison-Wesley, Reading, Mass., 1991.

[6] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency
abstractions for C]. In B. Magnusson, editor, Proc. of 16th
European Conf. on Object-Oriented Programming (ECOOP
2002), LNCS 2374, pages 415–440. Springer, June 2002.

[7] P. Brinch Hansen. Java’s insecure parallelism. ACM SIG-
PLAN Notices, 34(4):38–45, Apr. 1999.

[8] D. Caromel and Y. Roudier. Reactive programming in Eif-
fel//. In J.-P. Briot, J. M. Geib, and A. Yonezawa, editors,
Proc. of the Conf. on Object-Based Parallel and Distributed
Computation, LNCS 1107, pages 125–147. Springer, 1996.

[9] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-
based structural operational semantics of multi-threaded
Java. In J. Alves-Foss, editor, Formal Syntax and Semantics
of Java, LNCS 1523, pages 157–200. Springer, 1999.

[10] M. Clavel. Reflection in Rewriting Logic: Metalogical
Foundations and Metaprogramming Applications. CSLI
Publications, Stanford, California, 2000.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,
J. Meseguer, and J. F. Quesada. Maude: Specification and
programming in rewriting logic. Theoretical Computer Sci-
ence, 285:187–243, Aug. 2002.

[12] G. Cugola and C. Ghezzi. CJava: Introducing concurrent
objects in Java. In M. E. Orlowska and R. Zicari, edit-
ors, 4th Intl. Conf. on Object Oriented Information Systems
(OOIS’97), pages 504–514. Springer, 1997.

[13] O.-J. Dahl. Monitors revisited. In A. W. Roscoe, editor, A
Classical Mind, Essays in Honour of C.A.R. Hoare, pages
93–103. Prentice Hall, 1994.

[14] Werner Damm, Bernhard Josko, Amir Pnueli, Angelika
Votintseva: Understanding UML: A Formal Semantics
of Concurrency and Communication in Real-Time UML.
FMCO 2002, LNCS 2852, pages 71-98. Springer, 2003.

[15] C. de Oliveira Braga. Rewriting Logic as a Semantic Frame-
work for Modular Structural Operational Semantics. PhD
thesis, Pontifícia Univ. Católica do Rio de Janeiro, 2001.

[16] C. Ghezzi and M. Jazayeri. Programming Language Con-
cepts. John Wiley & Sons, 3rd edition, 1998.

[17] J. Goguen and J. Tardo. An introduction to OBJ: A language
for writing and testing formal algebraic program specifica-
tions. In N. Gehani and A. McGettrick, editors, Software
Specification Techniques. Addison-Wesley, 1986.

[18] J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java lan-
guage specification. Addison-Wesley, 2000.

[19] International Telecommunication Union. Open Distributed
Processing - Reference Model parts 1–4. Technical report,
ISO/IEC, Geneva, July 1995.

[20] E. B. Johnsen and O. Owe. A compositional formalism for
object viewpoints. In B. Jacobs and A. Rensink, editors,
Proc. 5th Intl. Conf. on Formal Methods for Open Object-
Based Distributed Systems (FMOODS’02), pages 45–60.
Kluwer Academic Publishers, Mar. 2002.

[21] E. B. Johnsen and O. Owe. Object-oriented specification
and open distributed systems. In O. Owe, S. Krogdahl, and
T. Lyche, editors, From Object-Orientation to Formal Meth-
ods: Essays in Memory of Ole-Johan Dahl, LNCS 2635,
pages 137–164. Springer, 2004.

[22] E. B. Johnsen, O. Owe, and E. W. Axelsen. A run-time envir-
onment for concurrent objects with asynchronous methods
calls. In Proc. 5th Intl. Workshop on Rewriting Logic and
its Applications (WRLA’04), Mar. 2004. To appear in Elec-
tronic Notes in Theoretical Computer Science. Elsevier.

[23] C. B. Jones. Development Methods for Computer Pro-
grammes Including a Notion of Interference. PhD thesis,
Oxford University, UK, June l981.

[24] B. H. Liskov and J. M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages and
Systems, 16(6):1811–1841, Nov. 1994.

[25] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes.
Runtime support for type-safe dynamic Java classes. In
E. Bertino, editor, 14th European Conf. on Object-Oriented
Programming (ECOOP’00), LNCS 1850, pages 337–361.
Springer, June 2000.

[26] J. Meseguer. Conditional rewriting logic as a unified model
of concurrency. Theor. Comp. Science, 96:73–155, 1992.

[27] R. Milner. Communication and Mobile Systems: the π-
Calculus. Cambridge University Press, 1999.

[28] E. Najm and J.-B. Stefani. A formal semantics for the ODP
computational model. Computer Networks and ISDN Sys-
tems, 27:1305–1329, 1995.

[29] O. Nierstrasz. A tour of Hybrid – A language for program-
ming with active objects. In D. Mandrioli and B. Meyer,
editors, Advances in Object-Oriented Software Engineering,
pages 167–182. Prentice Hall, 1992.

[30] O. Owe and I. Ryl. A notation for combining formal reason-
ing, object orientation and openness. Research Report 278,
Dept. of informatics, Univ. of Oslo, Norway, Nov. 1999.

[31] N. Soundarajan and S. Fridella. Inheritance: From code re-
use to reasoning reuse. In P. Devanbu and J. Poulin, edit-
ors, Proc. 5th Intl. Conf. on Software Reuse (ICSR5), pages
206–215. IEEE CS Press, 1998.

[32] A. Yonezawa. ABCL: An Object-Oriented Concurrent Sys-
tem. Series in Computer Systems. The MIT Press, 1990.

