
Reasoning about Asynchronous Method Calls and Inheritance

Johan Dovland, Einar Broch Johnsen, and Olaf Owe
Department of Informatics, University of Oslo

Abstract
This paper considers the problem of reusing synchronization constraints for
concurrent objects with asynchronous method calls. Our approach extends
the Creol language with a specialized composition operator expressing
synchronized merge. The use of synchronized merge allows synchronization
classes to be added and combined with general purpose classes by means of
multiple inheritance. The paper presents proof rules for synchronized merge
and several examples.

1 Introduction
Distributed systems have become increasingly important in todays world, and are used
in many applications, both over the Internet and local networks. Object orientation
and component design are recommended for this setting by e.g. RM-ODP [18] and
they are part of the philosophy of .Net. However, the integration of concurrency
and asynchronous communication with object orientation is unsettled. The present
paper is part of an approach combining the essential object-oriented principles with
asynchronously communicating concurrent objects. In particular, asynchronous method
calls and processor release points are introduced in the Creol language [21] to avoid
waiting for replies to remote method calls, extending the notion of future variable [28].
In this paper we focus on language mechanisms allowing reuse of code and partial
correctness reasoning, and thereby solving problems related to inheritance anomalies. The
mechanisms proposed are integrated in Creol and supported by its run-time system [22].

Inheritance is a powerful structuring mechanism for code reuse. Class extension
and redefinition aid in both development and understanding of code. Calling superclass
methods in a subclass method enables reuse in redefined methods, making the relationship
between the methods explicit. This paper focuses on reasoning control combined
with multiple inheritanceand processor release points. It is possible to inherit only a
subset of the attributes and methods of a superclass, but this requires considerable work
establishing invariants for parts of the superclass that appear desirable for inheritance,
either anticipating future needs or while designing subclasses. Reasoning considerations
therefore suggest that all attributes and methods of a superclass are inherited, but method
redefinition may violate the semantic requirements of an interface. Theencapsulation
principle for class inheritance states that it should suffice to work at the subclass level to
ensure that the subclass is well-behaved when inheriting from a superclass: Code design
and new proof obligations should occur in the subclass only. Inheritance anomalies
[24, 25] are situations breaking this encapsulation principle, in which reuse requires
redefinition. In this paper, we consider a language construct forsynchronized merge
combined with multiple inheritance and its use to deal with some inheritance anomalies.

In: C. Rong (Ed.):Proc. Norwegian Informatics Conference (NIK 2004), p. 213–224.
Tapir Forlag, Nov. 2004.



2 The Programming Language
We present a subset of the Creol language [21,22] sufficient for the discussion of the paper,
including the constructs for inheritance and synchronized merge used in the examples. We
distinguish two kinds of variables; data variables are typed by an abstract data type and
object variables are typed by an interface. A class may implement several interfaces and
an interface may be implemented by several classes. If a classC implements an interface
I , object instances ofC may have typeI .

Classes organize attributes (variables local to objects) and method declarations, and
may have value and object parameters as in Simula. We consider multiple inheritance
where all attributes and methods of a superclass are inherited by the subclass, and where
superclass methods may be redefined. To distinguish attributes or methods declarations
with the same name inherited from different classes, these may be subscripted with the
name of the class in which they are declared. An attribute or methodx declared in a class
C is uniquely named byxC (assuming no overloading of names within a class).

Class inheritance is declared by a keywordinherits taking as argument aninheritance
list of class namesC(E), whereE provides actual class parameters. A method is defined
abovea classC if it is declared inC or in at least one of the classes inherited byC. When a
method is invoked in an objecto of classC, a method body is identified in the inheritance
graph and bound to the call. To simplify the exposition, the method call is bound to the
first method definition aboveC in the inheritance graph, in a left-first depth-first order.

The encapsulation provided by interfaces suggests that external calls to an object of
classC arevirtually bound to the closest method definition aboveC. However, the object
may internally invoke methods of its superclasses. In the setting of multiple inheritance
and overloading, methods defined in a superclass may be accessed in the subclass using
subscripted references. IfC′ is a superclass ofC, we introduce the syntaxmC′(In;Out) for
(synchronous) local invocation of a method aboveC. As the binding of such calls may be
done without knowing the actual class of the object, they are calledstatic.

Objects are dynamically created instances of classes. Object attributes are
encapsulated and can only be accessed via the object’s methods. In addition to object
attributes, each method instance has its own local variables. The language provides a
mechanism for asynchronous method invocation, where calls are explicitly labeled and
computation continues without waiting for the reply to the call. We can later ask for
the reply by referring to its (unique) label value [21, 22]. Method instances may be
temporarilysuspendedby processor release points in method code. We assume a common
typeData of basic data values, such as the natural numbersNat and the object identifiers
Obj, includingthis, which may be passed as arguments to methods.

Processor Release Points.Guarded commandsg are used to explicitly declare potential
processor release pointsawait g. Guarded commands can be nested within the same local
variable scope, corresponding to a series of processor release points. When an inner
guard which evaluates tofalse is encountered during process execution, the process is
suspended and the processor released. After processor release, any suspended process
may be selected for execution. The typeGuard is constructed inductively:

• wait∈Guard(explicit release)
• t?∈Guard, wheret ∈ Label
• b∈Guard, whereb is a boolean expression over local and object state
• g1∧g2 andg1∨g2, whereg1,g2 ∈Guard.



Use ofwait will explicitly release the processor. The reply guardt? succeeds if the reply
to the method invocation with labelt has arrived. Evaluation of guards is done atomically.

Internal control flow in objects is expressed by composing guarded commands. Let
GS1 and GS2 be guarded commandsawait g1; S1 and await g2; S2. Inner guards are
obtained by sequential composition; in the statementGS1;GS2, the guardg2 is a potential
release point.Synchronized merge, GS1& GS2, is defined asawait g1∧g2; S1; S2, treating
non-guarded arguments as guarded by true and expanding synchronized method calls.
Control flow without potential processor release uses standardif andwhile constructs,
and assignment to local and object variables is expressed asV := E. In-parameters as well
asthis, label, andcaller are read-only variables, the two latter local to method instances.

With nested release points, the object need not block while waiting for replies. This
approach is more flexible than future variables: suspended processes or new method calls
may be evaluated while waiting. If the called object never replies, deadlock is avoided as
other activity in the object is possible. However, when the reply arrives, thecontinuation
of the process must compete with other enabled suspended processes.

Example: Inheritance of synchronization constraints. The language constructs are
now illustrated by examples from the literature on the inheritance anomaly [24], in partic-
ular anomalies related to the use of guards. First, we provide a general classLRec (Lim-
ited Resource) implementing a general controlling mechanism for resource allocation.

classLRec(limit: Nat)
begin var cnt: Nat = 0

op incr(n: Nat) ==await (cnt + n≤ limit); cnt := cnt + n
op decr(n: Nat) ==await (cnt - n≥ 0); cnt := cnt - n

end

Let unbounded buffers be defined by a classBuf with unguarded operations
put(in x: Data) and get(out x: Data). We assume that aget operation returns some
kind of error message if it is invoked on an empty buffer. By means ofmultiple inher-
itanceandsynchronous merge, these two classes may be used to implement a bounded
buffer using waiting, in order to perform buffer operations in a safe manner.

classBuf1(lth: Nat) inherits LRec(lth), Buf
begin
op put (in x: Data) == incrLRec(1) & putBuf (x)
op get (out x: Data) == decrLRec(1) & getBuf (;x)
op get2 (out x1, x2: Data) == decrLRec(2) & (getBuf (;x1); getBuf (;x2))

end

Note theget2 method where the guard ensures that twoget calls can be performed.
Further, the synchronization constraints have been defined in a separate class, which may
be reused in other contexts.

In the inheritance anomaly related tohistory sensitive behavior, an operationgget is
added to the buffer class which should behave likeget expect that it must wait after a
normalget. We define a mix-in classLock, with general synchronization operations. By
using multiple inheritance, the lock is added to the buffer class and the buffer operations
are redefined adding synchronization by means of synchronous merge:



classLock
begin var locked: Bool=false
op unlock == locked :=false
op lock == locked :=true
op sync ==await (¬ locked)

end

classBuf2(lth: Nat) inherits Buf1(lth), Lock
begin
op put (in x: Data) == unlockLock & putBuf1(x)
op get (out x: Data) == lockLock & getBuf1(;x)
op gget(out x: Data) == syncLock & getBuf1(;x)

end

This way, we have obtained a history sensitive version of the buffer class by combining the
two superclasses in a clean manner. The resultingggetmethod is guarded by(¬ locked∧
cnt≥ 1), ensuring that both guards are satisfied before the operation may start. This is in
general crucial to avoid deadlock: for instance if thesyncoperation grabs the lock agget
would then block a succeedinggget

op sync ==await ¬ locked; locked :=true

This example shows again how business code and synchronization code can be
developed independently, and combined effectively and cleanly. In contrast to recent
aspect-oriented approaches [25], including synchronization patterns and composition
filters, we use the same basic language to express both kinds of code.

3 Formal Reasoning in the Presence of Inheritance
We now consider invariant reasoning in presence of inheritance. In addition to the
importance of inheritance as a code reuse mechanism, it is desirable to obtain reuse at the
level of reasoning [27]. When a subclass redefines a method from a superclass, the ability
to invoke the super method enhances understandability and clearness of the code. When
reasoning about subclasses, we want to reuse existing proofs of the superclass invariants.

Class invariants. In a non-terminating system it is difficult to specify and reason
compositionally about behavior in terms of pre- and postconditions. Instead, pre- and
postconditions to method declarations are used to establish aclass invariant. In order
to facilitate compositional reasoning about Creol programs, the class invariant will be
used to establish arelationship between the internal state and the observable behaviorof
class instances. The internal state reflects the values of class attributes and the observable
behavior is expressed by a set of potential communication histories.

For this purpose, the class attributes are extended with a mythical history variable
H , using the empty (ε) and right append (̀) constructors for sequences, and the code is
extended with mythical statements to update the history variable for everyoutput message
generated by the program code [10]. Especially, the history is updated with a completion
message at the end of every method execution.

We introduce Hoare triples [5, 10, 16] on the form{P}S{Q} whereP and Q are
predicates over program states andS is a statement list in the programming language.
The meaning of such triples is that ifS starts execution in a state fulfillingP and the
execution ofSterminates, it will do so in a state fulfillingQ. Let FV[P] andFV[S] denote
the set of variables occurring free in a predicateP and a statement list S, respectively. The
set of variables which may have their values changed by execution of S is denotedW [S],
i.e. the set of variables occurring on the left hand side of an assignment statement or as
actual out-variables in a synchronous call or reply.

The class invariant ofC, denotedIC, is defined over class attributeswC and the history
sequence, but not over variables local to each method instance:FV[IC] ⊆ {wC,H }. The
invariant must be proved to hold at object creation by inspection of the initial values of



the class attributes. Consequently we may assume thatIC holds when the object processor
starts execution of an invoked method, if we can verify thatIC holds every time processor
control is released. Due to Creol’s processor release points, this can happen in two ways:

• method execution is completed, or
• guards inawait sentences are not satisfied, so method execution is suspended.

If we can establishIC before processor release points, it will be safe to assumeIC every
time a process starts orresumesexecution. For a general method bodySin C we then have
the following verification condition:{IC}S{IC}. In addition, if IC is established before a
processor release point, we may assumeIC and validity of the guard afterwards [12]:

{IC}await φ{IC∧φ}

Our semantics allowslocal reasoningabout objects in a concurrent system. The local
historyHo of a given objecto relates to the global historyHG by Ho=HG/o, whereHG/o
denotes the restriction ofHG to messages sent to or fromo. All invariantsIC in this paper
may refer to both input and output messages involvingC, but may only restrict output, i.e.

{IC}H := H ` 〈Input message〉{IC}.

During a suspension of a particular process, other processes are allowed to capture
processor control, which may lead to changes of object variables, thusW [await φ] = wC.
Also, the validity of a predicate not mentioning any of the variables which might have their
values changed by execution ofS, is not affected by the execution, which is formalized in
the axiom CONS of Hoare Logic:

CONS: {P}S{P} where FV[P]∩W [S] = /0

Especially, this means that actual in-parameters and variables declared local to a method
are not changed during process suspension.

Reasoning about synchronized merge. In this section we will develop sound
reasoning rules for the synchronized merge construction in Creol. This development is
based on analysis done in [12] which provides a sound reasoning system for sequential
statements, guards and asynchronous method calls in Creol based on Hoare Logic and
weakest liberal preconditions [11].

Given two statement listsawait g1;s1 andawait g2;s2 and assume that we have the
following separate proofs for these:{I1}awaitg1;s1{Q1} and{I2}awaitg2;s2{Q2}. We
will now develop a reasoning rule for the combined construction

{I1∧ I2}(awaitg1;s1)&(awaitg2;s2){Q1∧Q2}

The predicatesQ1 andQ2 may be identical to the invariantsI1 andI2 respectively, but this
is not required. By using the definition of & and reasoning about initial guards, the above
statement is reformulated as

{I1∧ I2∧g1∧g2}s1;s2{Q1∧Q2}

AssumingFV[I2,g2]∩W [s1] = /0 andFV[Q1]∩W [s2] = /0, the axiom CONS gives

{I2∧g2}s1{I2∧g2} and {Q1}s2{Q1}



Using sequencing and left weakening we combine the last three conditions and get the
following two premises:

{I1∧g1}s1{Q1} and {I2∧g2}s2{Q2}

which are provable by assumption. We may then conclude with the rule:

{I1}awaitg1;s1{Q1} {I2}awaitg2;s2{Q2}
{I1∧ I2}(awaitg1;s1)&(awaitg2;s2){Q1∧Q2}

(1)

whereFV[Q1]∩W [s2] = /0 andFV[I2,g2]∩W [s1] = /0. If s1 is empty, our first assumption
reduces to{I1}awaitg1{I1∧g1}. By a corresponding argument we then conclude with:

{I2}awaitg2;s2{Q2}
{I1∧ I2}(awaitg1)&(awaitg2;s2){I1∧g1∧Q2}

(2)

whereFV[I1,g1]∩W [S2] = /0 In the next subsection, we will use these general rules to
derive sound rules for inheritance reasoning.

Combining Invariant Reasoning and Inheritance
Using the notationmC for synchronous invocation of a methodm in a superclassC,
redefinitions of super methods may be combined with the operator &, so the sentence
nC1& mC2 invokesn as declared inC1 andm declared inC2. Execution of this sentence
leads to a suspension if at least one of the initial guards inn or m is not fulfilled.

Reasoning about class invariants and single inheritance.When a subclass invokes a
method defined in a superclassC, the subclass is responsible for establishingIC before
the invocation, and may consequently assumeIC after the invocation. This means that for
every methodmdefined inC, the subclass may assume:

{IC}mC{IC}

After an invocation, the subclass is further responsible for establishing its own invariant
before the next processor release point.

Reasoning about multiple inheritance. Mix-in classes are used to combine behavior
and synchronization constraints, so we assume that two classesCi andCj inherited by
a subclassC have no variables defined in a common ancestor class. Givenk mix-in
classesC1...Ck with invariantsI1...Ik and assume that these classes are inherited by a
common successor classC. The side conditions for the rules (1) and (2) are then ful-
filled, or more preciselyFV[I j ,nCj ]∩W [mCi ] = /0 for i 6= j,1≤ i ≤ k and 1≤ j ≤ k. As
for single inheritance,C may assume{Ii}mCi {Ii} for every methodm in Ci and every
i: 0≤ i ≤ k. Let m be a method inCi andn be a method inCj for i 6= j. As a spe-
cial case of (1) and (2) we may then reason about composition of super calls as follows:

INH1 :
{Ii}mCi {Ii} {I j}nCj {I j}
{Ii ∧ I j}mCi & nCj {Ii ∧ I j}

INH2 :
{I j}nCj {I j}

{Ii ∧ I j}(await φ) & nCj {Ii ∧ I j ∧φ}
whereawait φ is an expanded method body inCi . It may be noted that although two dif-
ferent classes do not share write access to common variables, two invocations of super
methods shareread access to some variables. This includesthis (identity of self) in ad-
dition to caller and label. The history sequence is also shared among the super classes,
however local reasoning is preserved by restrictions toIC.



4 Examples
We will in this section use the provided inheritance mechanisms to implement a version of
the readers/writers problem and use the derived rules to reason about the implementation.
The implementation uses two synchronization classes providing locking facilities for one
and several clients, respectively. The singleton synchronization class will be inherited
by the classWSync, giving writers exclusive right to the writing facility. The multiple
lock will be inherited by theRSyncclass, giving an arbitrary number of readers access to
the reading facility. At last,WSync andRSyncare inherited by a classRWSyncwhich
provides synchronization between readers and writers to ensure mutual exclusion.

Interfaces. The interfacesReadOnlyandReadWriteprovides basic reading and writing
activity and will not be further specified, but assumed to be implemented in a classRW. In
addition, we specify the two interfacesAcc andSyncused to implement locking facilities.

interface Acc
begin
op open()
op close()

end

interface Sync
inherits Acc

begin
op sync()
op waitFree()
inv Ok(H )

end

interface ReadOnly
begin
op read(in k: Key out y: Data)

end

interface ReadWrite
inherits ReadOnly

begin
op write(in k: Key, x: Data)

end

Using inheritance, the interfaceSync provides four methods:open, close, sync and
waitFreeand respects the invariant specificationOk(H ). Let m∈Mtd, and letcaller←m
be short notation for messages sent fromthis to caller at completion of the methodm. The
interface invariant is then defined as a predicate over the history:

Ok(ε)== true
Ok(H ` caller← waitFree)==Ok(H )∧Lock(H ) = /0

Ok(H ` caller← sync)== Ok(H )∧caller∈ Lock(H )
Ok(H ` others)==Ok(H )

An occurrence ofothers matches all events not giving a match against any of the above
left hand sides. In this caseothers will match completions ofopenandclose, as well
as input to the interface which means that the interface lies no restriction on calls made
by the environment. The functionLock : Seq[Msg]→ Set[Obj] is defined over message
sequences and returns the set of clients which captures the lock:

Lock(ε)== /0
Lock(H ` caller← open)== Lock(H )∪{caller}
Lock(H ` caller← close)== Lock(H )\{caller}

Lock(H ` others)==Lock(H )

Synchronization classes. The Sync interface will be implemented in two classes,
SSyncandMSync, which provide locking mechanisms.SSyncallows only one client
to capture the lock at a time, andMSync allows arbitrary many clients to share the lock.
The methodopenreturns when the client is given access to the lock, and this access is
returned by an invocation ofclose. The methodsyncreturns only when the calling client
has access to the database andwaitFreereturns only when the lock is free. Let Oid denote
the type of object identifiers.



classSSyncimplementsSync
begin var lock: Oid = null

op open == waitFree(); lock := caller
op close ==if lock = caller

then lock := null fi
op sync ==await (lock = caller)
op waitFree ==await (lock = null)

end

classMSync implementsSync
begin var mlock: OidSet =/0

op open == mlock := mlock∪ {caller}
op close == mlock := mlock\ {caller}
op sync ==await (caller∈ mlock)
op waitFree ==await (mlock = /0)

end

The abstract description ofSynccan be related to the internal state of objects of theSSync
andMSync classes by the following invariants:

ISSync : Lock(H /SSync) = {lock} IMSync : Lock(H /MSync) = mlock

where H /MSyncand H /SSyncdenote the restrictions of the global communication
history to events involving onlyMSync andSSyncrespectively.

Readers. Readers may share access to the database, so we use theMSync class to
synchronize them. All the methods defined inMSync are inherited directly, butread
operations are only allowed to take place when the client is registered in the lock. This is
achieved by invokingsyncMSync before reading can take place.

A reading session related to a specific client then takes place by an invocation of
openfollowed by an number ofread operations, and is completed by an invocation of
close. Note that this implementation allows a client to invoke theread operation even
if the client is not registered in the lock, the invocations will then be suspended due to
the synchronization requirement. Eventually, when the client has signed up for the lock,
the suspendedread operations can take place. Invocation of thewrite method defined
in RW is prohibited by interface specifications. This class inheritsIMSync as well as any
invariant provided byReadOnly. Concentrating on synchronization aspects, the latter is
left unspecified, soIRSync== IMSync.

Writers. Writers are synchronized bySSyncin order to get exclusive right to the data-
base. The invariant thereby becomesIWSync== ISSync. Since the lock inSSyncis imple-
mented as an object identifier, typing information establishes the requirement that only
one client can have write access at a time.

classRSyncinherits MSync, RW
implementsReadOnly, Acc

begin
op read(in k: Key out y: Data) ==

syncMSync & readRW (k; y)
end

classWSync inherits SSync, RW
implementsReadWrite, Acc

begin
op write(in k: Key, x: Data) ==

syncSSync& writeRW (k, x)
op read(in k: Key out y: Data) ==

syncSSync& readRW (k; y)
end

Note that thesyncandwaitFreemethods are not available to the environment since they
are not visible through the given interfaces.

Synchronization of Readers and Writers. At last, we join reading and writing capab-
ilities in a subclassRWSyncwhich inherits bothRSyncandWSync. By making calls to
super methods combined with the & operator, we ensure that a client is only given read
access when there are no writers and vice versa. Reading and writing operations are then



synchronized by the following class:

classRWSyncinherits RSync, WSync
implementsRWI

begin
op openRead == waitFreeWSync & openRSync

op closeRead == closeRSync

op openWrite == waitFreeRSync& openWSync

op closeWrite == closeWSync

op read(in k: Key out y: Data) == readRSync(k; y)
op write(in k: Key, x: Data) == writeWSync(k, x)

end

interface RWI
inherits ReadWrite

begin
op openRead()
op closeRead()
op openWrite()
op closeWrite()

end

Mutual exclusion between readers and writers is guaranteed by the following invariant:

IRWSync: IRSync∧ IWSync∧ (lock= null ∨mlock= /0)

To verify openRead, we may assume the following from the superclasses:

{IWSync}waitFreeWSync{IWSync∧ lock= null} and {IRSync}openRSync{IRSync}

Combining these using INH2 gives the following condition:

{IWSync∧ IRSync}waitFreeWSync & openRSync{IWSync∧ IRSync∧ lock= null}

which proves the desired conclusion{IRWSync}openRead{IRWSync} by consequence.
Verification ofopenWritecan be done the same way. Note that the alternative definition
of openWritegiven bywaitFreeRSync;openWSync leads toundesired behaviorsince the two
guards involved must be satisfiedsimultaneouslyin order to enforce mutual exclusion.

Bounded sequential synchronization. We now combine theSSyncclass and theBuf1
class given in Section 2 to form a class which performs synchronizedput andget opera-
tions, such that there is a bound on the number of operations a client may perform before
its permissions are withdrawn. The classLimSSyncredefines the earlier givenSSyncin
a way that restricts the holder of the lock to do a limited number of operations:

classLimSSync(limit: Nat) inherits SSyncimplementsSync
begin var count: Nat = 0

op open == openSSync& count := 0
op sync == syncSSync& (count := count + 1;if count = limit then closeSSyncfi)

end

The invariant for this class strengthens the previous invariantISSync:

ILimSSync: ISSync∧0≤ count≤ limit

An invariant forLRec (and therefore also forBuf1) can be formulated as:

IBuf1 : 0≤ cnt≤ lth

These two classes may again be inherited by a classBufSyncproviding locking mechan-
isms on the buffer, such that each client can only do a limited number of operations on
the buffer before the lock is released.



classBufSync(lth: Nat, limit: Nat) inherits LimSSync(limit), Buf1(lth)
begin

op put(in x: Data) == syncLimSSync& putBuf1(x)
op get(out x: Data) == syncLimSSync& getBuf1(;x)

end

The invariant for this class becomesIBufSync : IBuf1 ∧ ILimSSync which is proved by
combining proofs ofIBuf1 andILimSSyncusing the rule INH1.

Note that execution ofBufSync may lead to deadlock, for instance if the client
capturing the lock only invokesput. This limitation can be overcome by a more
sophisticated synchronization class allowing a number of active clients, but keeping the
ability to exclude clients from the buffer if they break some criteria of well behavior. This
requires more detailed programming ofLimSSync, not affecting the proof outline.

5 Related Work
Many object-oriented languages offer constructs for concurrency. A common approach
has been to rely on the tight synchronization of RPC and keep activity (threads) and
objects distinct, as done in Hybrid [26] and Java [15], or on the rendezvous concept in
concurrent objects languages such as Ada [4] and POOL-T [3]. For distributed systems,
with potential delays and even loss of communication, these approaches seem less
desirable. Hybrid offersdelegationas an explicit programming construct to (temporarily)
branch an activity thread. Asynchronous method calls can be implemented in e.g. Java by
explicitly creating new threads to handle calls [9]. To facilitate the programmer’s task and
reduce the risk of errors, implicit control structures based on asynchronous method calls
seem more attractive, allowing a higher level of abstraction in the language.

Languages based on the Actor model [1, 2] take asynchronous messages as the
communication primitive for loosely coupled processes. This makes Actor languages
conceptually attractive for distributed programming. Representing method calls by
asynchronous messages has lead to the notion of future variables found in e.g. languages
such as ABCL [28], Eiffel// [8], CJava [9], and in the Join-calculus [14] based languages
Polyphonic C] [6], and JoinJava [19]. The Creol notion of asynchronous method calls and
nested processor release points further extend this approach to asynchrony.

Most languages supporting asynchronous methods either disallow inheritance [19,28]
or impose redefinition of asynchronous methods [8]. In Polyphonic C] inheritance is
expressed as a disjunction of join patterns [14], resulting in nondeterminism rather than
overloading, and supplemented by a substitution mechanism for inherited code. CJava [9],
restricted to outer guards and single inheritance, allows synchronization code and bodies
to be redefined separately in subclasses. The approach of Ferenczi [13] is similar to ours
by using guards to reduce the inheritance anomaly, but only outer guards are considered,
and there is no explicit merge operator like our &. However, there is a form of implicit
merge by interpreting the sequential composition of two guards as a single guard with two
conjuncts. The approach of Ferenczi may be used to add guards to inherited code, but not
to define synchronization code in separate classes or modules.

Recent aspect-oriented approaches use constructions such as composition filters [7],
synchronization rings [17], synchronization patterns [23], and even temporal logic [25] to
achieve modular separation of business and synchronization code. An appealing property
of our approach is that the same language constructs are used for both kinds of code.



6 Conclusions
The Creol language uses guards as a high level construct for synchronization and
for controlling asynchronous interaction. In particular, a caller may decide whether
to invoke a method asynchronously or asynchronously, whereas method declarations
resembles those of synchronous methods. In this setting the combination of multiple
inheritance, synchronous merge, and synchronous calls to superclass method is exploited
to accommodate mix-in classes, separating synchronization code from business code
while using the same language constructs. We have demonstrated through examples how
the use of synchronous merge combined with synchronous local calls may be used to
reduce the inheritance anomaly. The use of synchronous merge, which is introduced in
this paper, gives simple solutions to the standard buffer anomaly examples.

We have also discussed reasoning issues related to our approach, and have shown that
the synchronous merge is semantically clean when used as suggested. In particular we
have a guarantee that superclass invariants are not violated when synchronous merge is
used as a combinator for superclass methods from disjoint superclasses. This means that
our approach facilitates reuse of partial correctness reasoning in subclasses. The interface
level of Creol, not emphasized here, supports aspect-oriented and behavioral specification
as well as compositional reasoning [20].

References
[1] G. A. Agha. Abstracting interaction patterns: A programming paradigm for open distributed

systems. In E. Najm and J.-B. Stefani, eds,1st IFIP Intl. Conf. on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’96), p. 135–153. Chapman & Hall, 1996.

[2] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation.
Journal of Functional Programming, 7(1):1–72, Jan. 1997.

[3] P. America. POOL-T: A parallel object-oriented language. In A. Yonezawa and M. Tokoro,
eds,Object-Oriented Concurrent Programming, pages 199–220. The MIT Press, 1987.

[4] G. R. Andrews.Concurrent Programming: Principles and Practice. Addison-Wesley, 1991.

[5] K. R. Apt. Ten years of Hoare’s logic: A survey — Part I.ACM Transactions on
Programming Languages and Systems, 3(4):431–483, Oct. 1981.

[6] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C]. In
B. Magnusson, editor,Proc. 16th Eur. Conf. on Object-Oriented Programming (ECOOP
2002), LNCS 2374, pages 415–440. Springer, June 2002.

[7] L. Bergmans.Composing Concurrent Objects. PhD thesis, University of Twente, 1994.

[8] D. Caromel and Y. Roudier. Reactive programming in Eiffel//. In J.-P. Briot, J. M. Geib, and
A. Yonezawa, editors,Proc. Conf. on Object-Based Parallel and Distributed Computation,
LNCS 1107, pages 125–147. Springer, 1996.

[9] G. Cugola and C. Ghezzi. CJava: Introducing concurrent objects in Java. In M. E. Orlowska
and R. Zicari, editors,4th Intl. Conf. on Object Oriented Information Systems (OOIS’97),
pages 504–514. Springer, 1997.

[10] O.-J. Dahl.Verifiable Programming. Prentice Hall, 1992.

[11] E. W. Dijkstra.A Discipline of Programming. Prentice Hall, 1976.



[12] J. Dovland, E. B. Johnsen, and O. Owe. A Hoare logic for objects with asynchronous method
calls. Research report, Dept. of Informatics, Univ. of Oslo, July 2004. In preparation.

[13] S. Ferenczi. Guarded methods vs. inheritance anomaly: Inheritance anomaly solved by
nested guarded method calls.ACM SIGPLAN Notices, 30(2):49–58, Feb. 1995.

[14] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join calculus. In
S. Kapoor and S. Prasad, eds,20th Conf. on Foundations of Software Technology and
Theoretical Comp. Science (FST TCS 2000), LNCS 1974, pages 397–408. Springer, 2000.

[15] J. Gosling, B. Joy, G. L. Steele, and G. Bracha.The Java language specification. Java series.
Addison-Wesley, Reading, Mass., 2nd edition, 2000.

[16] C. A. R. Hoare. An Axiomatic Basis of Computer Programming.Communications of the
ACM, 12:576–580, 1969.

[17] D. Holmes. Synchronization Rings – Composable Synchronization for Object-Oriented
Systems. PhD thesis, Macquarie University, 1999.

[18] International Telecommunication Union. Open Distributed Processing - Reference Model
parts 1–4. Technical report, ISO/IEC, Geneva, July 1995.

[19] G. S. Itzstein and M. Jasiunas. On implementing high level concurrency in Java. In
A. Omondi and S. Sedukhin, eds,19th Annual Computer Security Applications Conference
(ACSAC 2003), LNCS 2823, pages 151–165. Springer, 2003.

[20] E. B. Johnsen and O. Owe. A compositional formalism for object viewpoints. In B. Jacobs
and A. Rensink, editors,Proc. 5th Intl. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’02), pages 45–60. Kluwer Academic Publishers, Mar. 2002.

[21] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. InProc. 2nd IEEE Intl. Conf. on Software Engineering and Formal
Methods (SEFM’04), pages 188–197. IEEE Computer Society Press, Sept. 2004.

[22] E. B. Johnsen, O. Owe, and E. W. Axelsen. A run-time environment for concurrent objects
with asynchronous methods calls. InProc. 5th Intl. Workshop on Rewriting Logic and its
Applications (WRLA’04), To appear in ENTCS, Elsevier, 2004.

[23] C. V. Lopes and K. J. Lieberherr. Abstracting process-to-function relations in concurrent
object-oriented applications. In M. Tokoro and R. Pareschi, editors,Object-Oriented
Programming (ECOOP’94), LNCS 821, pages 81–99. Springer, 1994.

[24] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In G. Agha, P. Wegner, and A. Yonezawa, eds,Research
Directions in Concurrent Object-Oriented Programming, pages 107–150. MIT Press, 1993.

[25] G. Milicia and V. Sassone. The inheritance anomaly: ten years after. InProceedings of the
2004 ACM symposium on Applied computing, pages 1267–1274. ACM Press, 2004.

[26] O. Nierstrasz. A tour of Hybrid – A language for programming with active objects. In
D. Mandrioli and B. Meyer, editors,Advances in Object-Oriented Software Engineering,
pages 167–182. Prentice Hall, 1992.

[27] N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In
P. Devanbu and J. Poulin, editors,Proc. 5th Intl. Conf. on Software Reuse (ICSR5), pages
206–215. IEEE Computer Society Press, 1998.

[28] A. Yonezawa.ABCL: An Object-Oriented Concurrent System. The MIT Press, 1990.


