Reasoning about Asynchronous Method Calls and Inheritance

Johan Dovland, Einar Broch Johnsen, and Olaf Owe
Department of Informatics, University of Oslo

Abstract

This paper considers the problem of reusing synchronization constraints for
concurrent objects with asynchronous method calls. Our approach extends
the Creol language with a specialized composition operator expressing
synchronized merge. The use of synchronized merge allows synchronization
classes to be added and combined with general purpose classes by means of
multiple inheritance. The paper presents proof rules for synchronized merge
and several examples.

1 Introduction

Distributed systems have become increasingly important in todays world, and are used
in many applications, both over the Internet and local networks. Object orientation
and component design are recommended for this setting by e.g. RM-ODP [18] and
they are part of the philosophy of .Net. However, the integration of concurrency
and asynchronous communication with object orientation is unsettled. The present
paper is part of an approach combining the essential object-oriented principles with
asynchronously communicating concurrent objects. In particular, asynchronous method
calls and processor release points are introduced in the Creol language [21] to avoid
waiting for replies to remote method calls, extending the notion of future variable [28].
In this paper we focus on language mechanisms allowing reuse of code and partial
correctness reasoning, and thereby solving problems related to inheritance anomalies. The
mechanisms proposed are integrated in Creol and supported by its run-time system [22].
Inheritance is a powerful structuring mechanism for code reuse. Class extension
and redefinition aid in both development and understanding of code. Calling superclass
methods in a subclass method enables reuse in redefined methods, making the relationship
between the methods explicit. This paper focuses on reasoning control combined
with multiple inheritanceand processor release points. It is possible to inherit only a
subset of the attributes and methods of a superclass, but this requires considerable work
establishing invariants for parts of the superclass that appear desirable for inheritance,
either anticipating future needs or while designing subclasses. Reasoning considerations
therefore suggest that all attributes and methods of a superclass are inherited, but method
redefinition may violate the semantic requirements of an interface. elbapsulation
principle for class inheritance states that it should suffice to work at the subclass level to
ensure that the subclass is well-behaved when inheriting from a superclass: Code design
and new proof obligations should occur in the subclass only. Inheritance anomalies
[24, 25] are situations breaking this encapsulation principle, in which reuse requires
redefinition. In this paper, we consider a language construcsyfochronized merge
combined with multiple inheritance and its use to deal with some inheritance anomalies.

In: C. Rong (Ed.):Proc. Norwegian Informatics Conference (NIK 2004)213-224.
Tapir Forlag, Nov. 2004.

2 The Programming Language

We present a subset of the Creol language [21,22] sufficient for the discussion of the paper,
including the constructs for inheritance and synchronized merge used in the examples. We
distinguish two kinds of variables; data variables are typed by an abstract data type and
object variables are typed by an interface. A class may implement several interfaces and
an interface may be implemented by several classes. If aClasplements an interface

I, object instances &@ may have typé.

Classes organize attributes (variables local to objects) and method declarations, and
may have value and object parameters as in Simula. We consider multiple inheritance
where all attributes and methods of a superclass are inherited by the subclass, and where
superclass methods may be redefined. To distinguish attributes or methods declarations
with the same name inherited from different classes, these may be subscripted with the
name of the class in which they are declared. An attribute or metkedlared in a class
C is uniquely named byc (assuming no overloading of names within a class).

Class inheritance is declared by a keywirgerits taking as argument anheritance
list of class name€(E), wherek provides actual class parameters. A method is defined
abovea clas<Cifitis declared inC or in at least one of the classes inheritedbyVhen a
method is invoked in an objeotof classC, a method body is identified in the inheritance
graph and bound to the call. To simplify the exposition, the method call is bound to the
first method definition abov€ in the inheritance graph, in a left-first depth-first order.

The encapsulation provided by interfaces suggests that external calls to an object of
classC arevirtually bound to the closest method definition ab&/eHowever, the object
may internally invoke methods of its superclasses. In the setting of multiple inheritance
and overloading, methods defined in a superclass may be accessed in the subclass using
subscripted references.Qf is a superclass &, we introduce the syntaxc: (In; Out) for
(synchronous) local invocation of a method ab@veé\s the binding of such calls may be
done without knowing the actual class of the object, they are catbdat.

Objects are dynamically created instances of classes. Object attributes are
encapsulated and can only be accessed via the object’'s methods. In addition to object
attributes, each method instance has its own local variables. The language provides a
mechanism for asynchronous method invocation, where calls are explicitly labeled and
computation continues without waiting for the reply to the call. We can later ask for
the reply by referring to its (unique) label value [21, 22]. Method instances may be
temporarilysuspendedly processor release points in method code. We assume a common
type Data of basic data values, such as the natural numKatsind the object identifiers
Obj, includingthis, which may be passed as arguments to methods.

Processor Release Points. Guarded commandsgare used to explicitly declare potential
processor release poirgwait g. Guarded commands can be nested within the same local
variable scope, corresponding to a series of processor release points. When an inner
guard which evaluates tfalse is encountered during process execution, the process is
suspended and the processor released. After processor release, any suspended process
may be selected for execution. The ty@eardis constructed inductively:

wait € Guard (explicit release)

t? € Guard wheret € Label

b € Guard, whereb is a boolean expression over local and object state
01 A Q2 andg: V g2, wheregi, g2 € Guard

Use ofwait will explicitly release the processor. The reply guePdsucceeds if the reply
to the method invocation with labehas arrived. Evaluation of guards is done atomically.
Internal control flow in objects is expressed by composing guarded commands. Let
GS and GS be guarded commandswvaitgs;S; and await gz; Sp. Inner guards are
obtained by sequential composition; in the staten@&Ht GS, the guardy, is a potential
release pointSynchronized merg&S & GS, is defined asawait g1 A go; S1; S, treating
non-guarded arguments as guarded by true and expanding synchronized method calls.
Control flow without potential processor release uses stanfland while constructs,
and assignment to local and object variables is expressed=a&. In-parameters as well
asthis, label andcallerare read-only variables, the two latter local to method instances.
With nested release points, the object need not block while waiting for replies. This
approach is more flexible than future variables: suspended processes or new method calls
may be evaluated while waiting. If the called object never replies, deadlock is avoided as
other activity in the object is possible. However, when the reply arrives;ahgnuation
of the process must compete with other enabled suspended processes.

Example: Inheritance of synchronization constraints. The language constructs are
now illustrated by examples from the literature on the inheritance anomaly [24], in partic-
ular anomalies related to the use of guards. First, we provide a general Bas¢Lim-

ited Resource) implementing a general controlling mechanism for resource allocation.

classLRedlimit: Nat)
begin varcnt: Nat=0
op incr(n: Nat) ==await (cnt + n< limit); cnt:=cnt + n
op decr(n: Nat) ==await (cnt-n> 0); cnt:=cnt-n
end

Let unbounded buffers be defined by a claBsf with unguarded operations
put(in x: Data) and get(out x: Data). We assume that get operation returns some
kind of error message if it is invoked on an empty buffer. By meansaltiple inher-
itanceand synchronous mergehese two classes may be used to implement a bounded
buffer using waiting, in order to perform buffer operations in a safe manner.

classBufl(lth: Nat)inherits LReqlth), Buf
begin

op put (in x: Data) == incf re(1) & putgyr (X)

op get (out x: Data) == decrred1) & getgur (;X)

op get2 put x1, x2: Data) == deglked2) & (getaur (;X1); g€bur (;X2))
end

Note the get2 method where the guard ensures that tget calls can be performed.
Further, the synchronization constraints have been defined in a separate class, which may
be reused in other contexts.

In the inheritance anomaly relatedhastory sensitive behavipan operatiorggetis
added to the buffer class which should behave gt expect that it must wait after a
normalget We define a mix-in claskock, with general synchronization operations. By
using multiple inheritance, the lock is added to the buffer class and the buffer operations
are redefined adding synchronization by means of synchronous merge:

classLock classBuf2(lth: Nat) inherits Buf1(lth), Lock

begin var locked: Bool¥alse begin
op unlock == locked :=false op put (in x: Data) == unlockock & putgus(X)
op lock == locked :=true op get (out x: Data) == lock ock & getguri(;X)
op sync ==await (—locked) op ggetput x: Data) == syngock & getgur(;X)
end end

This way, we have obtained a history sensitive version of the buffer class by combining the
two superclasses in a clean manner. The resuffgegmethod is guarded by—lockedA

cnt > 1), ensuring that both guards are satisfied before the operation may start. This is in
general crucial to avoid deadlock: for instance if #y@coperation grabs the lockgget
would then block a succeedimget

op sync ==await —locked; locked :=true

This example shows again how business code and synchronization code can be
developed independently, and combined effectively and cleanly. In contrast to recent
aspect-oriented approaches [25], including synchronization patterns and composition
filters, we use the same basic language to express both kinds of code.

3 Formal Reasoning in the Presence of Inheritance

We now consider invariant reasoning in presence of inheritance. In addition to the

importance of inheritance as a code reuse mechanism, it is desirable to obtain reuse at the
level of reasoning [27]. When a subclass redefines a method from a superclass, the ability
to invoke the super method enhances understandability and clearness of the code. When
reasoning about subclasses, we want to reuse existing proofs of the superclass invariants.

Class invariants. In a non-terminating system it is difficult to specify and reason
compositionally about behavior in terms of pre- and postconditions. Instead, pre- and
postconditions to method declarations are used to establtédsa invariant In order

to facilitate compositional reasoning about Creol programs, the class invariant will be
used to establishr@lationship between the internal state and the observable behafior

class instances. The internal state reflects the values of class attributes and the observable
behavior is expressed by a set of potential communication histories.

For this purpose, the class attributes are extended with a mythical history variable
H, using the emptys) and right appendH) constructors for sequences, and the code is
extended with mythical statements to update the history variable for eugpyt message
generated by the program code [10]. Especially, the history is updated with a completion
message at the end of every method execution.

We introduce Hoare triples [5, 10, 16] on the fodR} S{Q} whereP and Q are
predicates over program states & a statement list in the programming language.
The meaning of such triples is that & starts execution in a state fulfilling and the
execution ofSterminates, it will do so in a state fulfillinQ. Let FV[P] andFV [denote
the set of variables occurring free in a predidai@nd a statement list S, respectively. The
set of variables which may have their values changed by execution of S is d@mo8:d
i.e. the set of variables occurring on the left hand side of an assignment statement or as
actual out-variables in a synchronous call or reply.

The class invariant &, denotedc, is defined over class attributes and the history
sequence, but not over variables local to each method inst&Niés] C {we, H}. The
invariant must be proved to hold at object creation by inspection of the initial values of

the class attributes. Consequently we may assumédhalds when the object processor
starts execution of an invoked method, if we can verify thdtolds every time processor
control is released. Due to Creol’s processor release points, this can happen in two ways:

e method execution is completed, or
e guards inawait sentences are not satisfied, so method execution is suspended.

If we can establisl: before processor release points, it will be safe to assgreeery
time a process starts msume®xecution. For a general method bdiy C we then have
the following verification condition{lc} S{Ic}. In addition, iflc is established before a
processor release point, we may assugend validity of the guard afterwards [12]:

{Ic}await o{lc A @}

Our semantics allowscal reasoningabout objects in a concurrent system. The local
history #, of a given objecb relates to the global histotjis by H,=#s/0, whereHg /o
denotes the restriction & to messages sent to or framAll invariantsic in this paper
may refer to both input and output messages invol@ngut may only restrict output, i.e.

{Ic} H := H \ (Input messag€Ic}.

During a suspension of a particular process, other processes are allowed to capture
processor control, which may lead to changes of object variablesJthawait ¢ = wc.
Also, the validity of a predicate not mentioning any of the variables which might have their
values changed by execution$fis not affected by the execution, which is formalized in
the axiom CONS of Hoare Logic:

CONS: {P}S{P} where FV[P|NW[§ =0

Especially, this means that actual in-parameters and variables declared local to a method
are not changed during process suspension.

Reasoning about synchronized merge. In this section we will develop sound
reasoning rules for the synchronized merge construction in Creol. This development is
based on analysis done in [12] which provides a sound reasoning system for sequential
statements, guards and asynchronous method calls in Creol based on Hoare Logic and
weakest liberal preconditions [11].

Given two statement listawaitg;;s; andawaitgp; s, and assume that we have the
following separate proofs for thesfl; } awaitgs; s1 {Q1} and{l>} awaitgy; s, {Q2}. We
will now develop a reasoning rule for the combined construction

{laAl2} (awaitgs; s1)& (await go; s2) {Q1 A Q2}

The predicate®; andQ2 may be identical to the invariantsandl, respectively, but this
is not required. By using the definition of & and reasoning about initial guards, the above
statement is reformulated as

{linl2A Q1A G2} s1;92{Q1 A Q2}
AssumingFV/(l, g2] N W[s1] = 0 andFV[Q1] N W[s,] = 0, the axiom CONS gives

{lang2}si{lange} and {Q1}s{Q1}

Using sequencing and left weakening we combine the last three conditions and get the
following two premises:

{liAo}si{Qi} and {l2AQ2}$2{Q2}
which are provable by assumption. We may then conclude with the rule:
{11} awaitgy;s1 {Q1} {2} awaitgy; 2 {Q2})
{1 A 12} (awaitgy; s1)& (awaitgy;) {Q1 A Q2 }
whereFV [Q1]NW[s;] = 0andFV([l2, g2] N W[s1] = 0. If s1 is empty, our first assumption
reduces td |1} awaitgs {I1 A g1}. By a corresponding argument we then conclude with:
{2} awaitgy; 2 {Q2}
{1 A1} (awaitgr)& (awaitgy; sp) {11 A g1 A Q2}

whereFV(l1,01] N W[S] = 0 In the next subsection, we will use these general rules to
derive sound rules for inheritance reasoning.

(2)

Combining Invariant Reasoning and Inheritance

Using the notationmc for synchronous invocation of a methoa in a superclasg,
redefinitions of super methods may be combined with the operator &, so the sentence
nc,& mc, invokesn as declared i€, andm declared irC,. Execution of this sentence
leads to a suspension if at least one of the initial guarasanm is not fulfilled.

Reasoning about class invariants and single inheritance.When a subclass invokes a
method defined in a superclaSsthe subclass is responsible for establishindpefore
the invocation, and may consequently assigeter the invocation. This means that for
every methodn defined inC, the subclass may assume:

{lc} mc{lc}

After an invocation, the subclass is further responsible for establishing its own invariant
before the next processor release point.

Reasoning about multiple inheritance. Mix-in classes are used to combine behavior
and synchronization constraints, so we assume that two cl@sse®lC; inherited by

a subclas€ have no variables defined in a common ancestor class. &ivaix-in
classe<;...Cx with invariantsly...Ix and assume that these classes are inherited by a
common successor cla€s The side conditions for the rules (1) and (2) are then ful-
filled, or more preciselfV(lj,nc;] N Wimg]=0fori+#j,1<i<kand 1< j<k As

for single inheritanceC may assumgl;} mc, {li} for every methodm in C; and every

i 0<i <k Letmbe a method irC; andn be a method irC; for i # j. As a spe-

cial case of (1) and (2) we may then reason about composition of super calls as follows:

INH - {lifmg {li} {lj}ne; {lj} INH, {li}nc; {1}

{linlj}mg & N {intj} {li Alj} (await @) & Nc; {intA@}
whereawait @ is an expanded method body@ It may be noted that although two dif-
ferent classes do not share write access to common variables, two invocations of super
methods shareead access to some variables. This inclutigs (identity of self) in ad-
dition to caller andlabel. The history sequence is also shared among the super classes,
however local reasoning is preserved by restrictions.to

4 Examples

We willin this section use the provided inheritance mechanisms to implement a version of
the readers/writers problem and use the derived rules to reason about the implementation.
The implementation uses two synchronization classes providing locking facilities for one
and several clients, respectively. The singleton synchronization class will be inherited
by the classWSyng giving writers exclusive right to the writing facility. The multiple

lock will be inherited by theRSyncclass, giving an arbitrary number of readers access to
the reading facility. At lastWSyncand RSyncare inherited by a clas8WSyncwhich
provides synchronization between readers and writers to ensure mutual exclusion.

Interfaces. The interfacefReadOnlyandReadWriteprovides basic reading and writing
activity and will not be further specified, but assumed to be implemented in aRlsin
addition, we specify the two interfacdec andSyncused to implement locking facilities.

interface Acc interface Sync interface ReadOnly interface ReadWrite
begin inherits Acc begin inherits ReadOnly
opopen() begin op read{n k: Keyouty: Data) begin
op close() op sync() end op write(in k: Key, x: Data)
end op waitFree() end
inv Ok(#H)
end

Using inheritance, the interfac8ync provides four methods.open close sync and
waitFreeand respects the invariant specificat@k(#). Letme Mtd, and letcaller —m
be short notation for messages sent ftbiato caller at completion of the methad. The
interface invariant is then defined as a predicate over the history:

Ok(g) ==true
Ok(H + caller — waitFree) == Ok(#) A Lock(H) = 0
Ok(H + caller +— syng == Ok(H) A caller € Lock(#)
Ok(H + others) ==Ok(H)

An occurrence obthers matches all events not giving a match against any of the above
left hand sides. In this cas#hers will match completions obpenand close as well

as input to the interface which means that the interface lies no restriction on calls made
by the environment. The functidmock: SedMsg — SefObj| is defined over message
sequences and returns the set of clients which captures the lock:

Lock(e) ==
Lock(H + caller — oper) == Lock(#) U {caller}
Lock(H - caller — close == Lock(H) \ {caller}
Lock(#H + others) ==Lock(H)

Synchronization classes. The Sync interface will be implemented in two classes,
SSyncand MSyng which provide locking mechanismsSSyncallows only one client

to capture the lock at a time, andSync allows arbitrary many clients to share the lock.
The methodopenreturns when the client is given access to the lock, and this access is
returned by an invocation aflose The methodsyncreturns only when the calling client
has access to the database aadtFreereturns only when the lock is free. Let Oid denote
the type of object identifiers.

classSSyncimplements Sync classMSyncimplements Sync

begin var lock: Oid = null begin var mlock: OidSet =0
op open == waitFree(); lock := caller op open == mlock := mlockJ {caller}
op close ==if lock = caller op close == mlock := mlock {caller}
then lock := null fi op sync ==await (caller € mlock)
op sync ==await (lock = caller) op waitFree ==await (mlock =0)
op waitFree ==await (lock = null) end
end

The abstract description &ynccan be related to the internal state of objects of38gnc
andMSync classes by the following invariants:

Issync: Lock(#H /SSyng = {lock} Imsync : Lock(#H /MSyng = mlock

where # /MSyncand H /SSyncdenote the restrictions of the global communication
history to events involving onlWSync and SSyncrespectively.

Readers. Readers may share access to the database, so we ub£Syme class to
synchronize them. All the methods defined MSync are inherited directly, butead
operations are only allowed to take place when the client is registered in the lock. This is
achieved by invokingynavsync before reading can take place.

A reading session related to a specific client then takes place by an invocation of
openfollowed by an number ofeadoperations, and is completed by an invocation of
close Note that this implementation allows a client to invoke tlkad operation even
if the client is not registered in the lock, the invocations will then be suspended due to
the synchronization requirement. Eventually, when the client has signed up for the lock,
the suspendedead operations can take place. Invocation of thete method defined
in RW is prohibited by interface specifications. This class inhéjgitgnc as well as any
invariant provided byReadOnly Concentrating on synchronization aspects, the latter is
left unspecified, sbrsync== Imsync

Writers. Writers are synchronized b§Syncin order to get exclusive right to the data-
base. The invariant thereby becom@gync== lssyne Since the lock ir5Syncis imple-
mented as an object identifier, typing information establishes the requirement that only
one client can have write access at a time.

classRSyncinherits MSyng RW classWSyncinherits SSyn¢ RW
implements ReadOnly Acc implements ReadWrite Acc
begin begin
op read(n k: Key outy: Data) == op write(in k: Key, x: Data) ==
SYNQusync & readrw (K; y) SYNGssync& Write rw (K, X)
end op read{n k: Key outy: Data) ==

SYNGssync& readry (K; y)
end
Note that thesyncandwaitFreemethods are not available to the environment since they
are not visible through the given interfaces.

Synchronization of Readers and Writers. At last, we join reading and writing capab-

ilities in a subclasfkWSyncwhich inherits bothRSyncand WSync By making calls to

super methods combined with the & operator, we ensure that a client is only given read
access when there are no writers and vice versa. Reading and writing operations are then

synchronized by the following class:

classRWSyncinherits RSyn¢ WSync interface RWI
implements RWI inherits ReadWrite
begin begin
op openRead == waitFregsync & Openrsync op openRead()
op closeRead == closgync op closeRead()
op openWrite == waitFregsync& openysync op openWrite()
op closeWrite == closgsync op closeWrite()
op read(n k: Key out y: Data) == reag@syndK; y) end
op write(in k: Key, x: Data) == writgysyndK, X)
end

Mutual exclusion between readers and writers is guaranteed by the following invariant:
To verify openReagdwe may assume the following from the superclasses:

Combining these using INfgives the following condition:

which proves the desired conclusiofirwsynd openReadlrwsynd by consequence.
Verification of openWritecan be done the same way. Note that the alternative definition
of openWritegiven by waitFreezsyns 0penysync l€ads toundesired behaviosince the two
guards involved must be satisfisoinultaneouslyn order to enforce mutual exclusion.

Bounded sequential synchronization. We now combine th&Syncclass and th&ufl

class given in Section 2 to form a class which performs synchromeédndget opera-

tions, such that there is a bound on the number of operations a client may perform before
its permissions are withdrawn. The cldgsmSSyncredefines the earlier giveBSyncin

a way that restricts the holder of the lock to do a limited number of operations:

classLimSSyndlimit: Nat) inherits SSyncimplements Sync
begin var count: Nat =0

op open == opedsync& count :=0

0p SyNnc == Syngsync& (count := count + 1jf count = limitthen closessyncfi)
end

The invariant for this class strengthens the previous invatighhe
An invariant forLRec (and therefore also fadBufl) can be formulated as:

lgurr: 0<cnt<lIth

These two classes may again be inherited by a &a$Syncproviding locking mechan-
isms on the buffer, such that each client can only do a limited number of operations on

the buffer before the lock is released.

classBufSyndlth: Nat, limit: Nat)inherits LimSSyndlimit), Buf1(Ith)
begin
op put(n x: Data) == syngimssync& Putgur1(X)
op getut x: Data) == syngimssync& getguri(;X)
end
The invariant for this class becomeégyssync : 1sur1 A ILimssync Which is proved by
combining proofs ofgyf; andl imssyncusing the rule INH.

Note that execution oBufSync may lead to deadlock, for instance if the client
capturing the lock only invokegut This limitation can be overcome by a more
sophisticated synchronization class allowing a number of active clients, but keeping the
ability to exclude clients from the buffer if they break some criteria of well behavior. This
requires more detailed programminglomSSyn¢ not affecting the proof outline.

5 Related Work

Many object-oriented languages offer constructs for concurrency. A common approach
has been to rely on the tight synchronization of RPC and keep activity (threads) and
objects distinct, as done in Hybrid [26] and Java [15], or on the rendezvous concept in
concurrent objects languages such as Ada [4] and POOL-T [3]. For distributed systems,
with potential delays and even loss of communication, these approaches seem less
desirable. Hybrid offergelegatioras an explicit programming construct to (temporarily)
branch an activity thread. Asynchronous method calls can be implemented in e.g. Java by
explicitly creating new threads to handle calls [9]. To facilitate the programmer’s task and
reduce the risk of errors, implicit control structures based on asynchronous method calls
seem more attractive, allowing a higher level of abstraction in the language.

Languages based on the Actor model [1, 2] take asynchronous messages as the
communication primitive for loosely coupled processes. This makes Actor languages
conceptually attractive for distributed programming. Representing method calls by
asynchronous messages has lead to the notion of future variables found in e.g. languages
such as ABCL [28], Eiffel/ [8], CJava [9], and in the Join-calculus [14] based languages
Polyphonic € [6], and JoinJava [19]. The Creol notion of asynchronous method calls and
nested processor release points further extend this approach to asynchrony.

Most languages supporting asynchronous methods either disallow inheritance [19, 28]
or impose redefinition of asynchronous methods [8]. In PolyphoriinBeritance is
expressed as a disjunction of join patterns [14], resulting in nondeterminism rather than
overloading, and supplemented by a substitution mechanism for inherited code. CJava [9],
restricted to outer guards and single inheritance, allows synchronization code and bodies
to be redefined separately in subclasses. The approach of Ferenczi [13] is similar to ours
by using guards to reduce the inheritance anomaly, but only outer guards are considered,
and there is no explicit merge operator like our &. However, there is a form of implicit
merge by interpreting the sequential composition of two guards as a single guard with two
conjuncts. The approach of Ferenczi may be used to add guards to inherited code, but not
to define synchronization code in separate classes or modules.

Recent aspect-oriented approaches use constructions such as composition filters [7],
synchronization rings [17], synchronization patterns [23], and even temporal logic [25] to
achieve modular separation of business and synchronization code. An appealing property
of our approach is that the same language constructs are used for both kinds of code.

6 Conclusions

The Creol language uses guards as a high level construct for synchronization and
for controlling asynchronous interaction. In particular, a caller may decide whether
to invoke a method asynchronously or asynchronously, whereas method declarations
resembles those of synchronous methods. In this setting the combination of multiple
inheritance, synchronous merge, and synchronous calls to superclass method is exploited
to accommodate mix-in classes, separating synchronization code from business code
while using the same language constructs. We have demonstrated through examples how
the use of synchronous merge combined with synchronous local calls may be used to
reduce the inheritance anomaly. The use of synchronous merge, which is introduced in
this paper, gives simple solutions to the standard buffer anomaly examples.

We have also discussed reasoning issues related to our approach, and have shown that
the synchronous merge is semantically clean when used as suggested. In particular we
have a guarantee that superclass invariants are not violated when synchronous merge is
used as a combinator for superclass methods from disjoint superclasses. This means that
our approach facilitates reuse of partial correctness reasoning in subclasses. The interface
level of Creol, not emphasized here, supports aspect-oriented and behavioral specification
as well as compositional reasoning [20].

References

[1] G. A. Agha. Abstracting interaction patterns: A programming paradigm for open distributed
systems. In E. Najm and J.-B. Stefani, etis, IFIP Intl. Conf. on Formal Methods for Open
Object-Based Distributed Systems (FMOODS/$6)135-153. Chapman & Hall, 1996.

[2] G.A.Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation.
Journal of Functional Programming/(1):1-72, Jan. 1997.

[3] P. America. POOL-T: A parallel object-oriented language. In A. Yonezawa and M. Tokoro,
eds,Object-Oriented Concurrent Programmingages 199-220. The MIT Press, 1987.

[4] G.R. Andrews.Concurrent Programming: Principles and Practicdddison-Wesley, 1991.

[5] K. R. Apt. Ten years of Hoare’s logic: A survey — Part IACM Transactions on
Programming Languages and Syste(#):431-483, Oct. 1981.

[6] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for 1@
B. Magnusson, editoProc. 16th Eur. Conf. on Object-Oriented Programming (ECOOP
2002) LNCS 2374, pages 415-440. Springer, June 2002.

[7] L. Bergmans.Composing Concurrent Object®hD thesis, University of Twente, 1994.

[8] D.Caromel and Y. Roudier. Reactive programming in Ejffeln J.-P. Briot, J. M. Geib, and
A. Yonezawa, editorsProc. Conf. on Object-Based Parallel and Distributed Computation
LNCS 1107, pages 125-147. Springer, 1996.

[9] G. Cugola and C. Ghezzi. CJava: Introducing concurrent objects in Java. In M. E. Orlowska
and R. Zicari, editors4th Intl. Conf. on Object Oriented Information Systems (O0IS'97)
pages 504-514. Springer, 1997.

[10] O.-J. Dahl.Verifiable ProgrammingPrentice Hall, 1992.

[11] E. W. Dijkstra. A Discipline of ProgrammingPrentice Hall, 1976.

[12] J. Dovland, E. B. Johnsen, and O. Owe. A Hoare logic for objects with asynchronous method
calls. Research report, Dept. of Informatics, Univ. of Oslo, July 2004. In preparation.

[13] S. Ferenczi. Guarded methods vs. inheritance anomaly: Inheritance anomaly solved by
nested guarded method calSCM SIGPLAN Notices30(2):49-58, Feb. 1995.

[14] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join calculus. In
S. Kapoor and S. Prasad, ed¥th Conf. on Foundations of Software Technology and
Theoretical Comp. Science (FST TCS 20Q0CS 1974, pages 397-408. Springer, 2000.

[15] J. Gosling, B. Joy, G. L. Steele, and G. Bracliie Java language specificatioava series.
Addison-Wesley, Reading, Mass., 2nd edition, 2000.

[16] C. A. R. Hoare. An Axiomatic Basis of Computer Programmir@ommunications of the
ACM, 12:576-580, 1969.

[17] D. Holmes. Synchronization Rings — Composable Synchronization for Object-Oriented
SystemsPhD thesis, Macquarie University, 1999.

[18] International Telecommunication Union. Open Distributed Processing - Reference Model
parts 1-4. Technical report, ISO/IEC, Geneva, July 1995.

[19] G. S. ltzstein and M. Jasiunas. On implementing high level concurrency in Java. In
A. Omondi and S. Sedukhin, eds9th Annual Computer Security Applications Conference
(ACSAC 2003)LNCS 2823, pages 151-165. Springer, 2003.

[20] E. B. Johnsen and O. Owe. A compositional formalism for object viewpoints. In B. Jacobs
and A. Rensink, editorroc. 5th Intl. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’Q3ages 45-60. Kluwer Academic Publishers, Mar. 2002.

[21] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. IProc. 2nd IEEE Intl. Conf. on Software Engineering and Formal
Methods (SEFM’04)pages 188-197. IEEE Computer Society Press, Sept. 2004.

[22] E. B. Johnsen, O. Owe, and E. W. Axelsen. A run-time environment for concurrent objects
with asynchronous methods calls. Pmoc. 5th Intl. Workshop on Rewriting Logic and its
Applications (WRLA'04)To appear in ENTCS, Elsevier, 2004.

[23] C. V. Lopes and K. J. Lieberherr. Abstracting process-to-function relations in concurrent
object-oriented applications. In M. Tokoro and R. Pareschi, editdigect-Oriented
Programming (ECOOP’94)LNCS 821, pages 81-99. Springer, 1994.

[24] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In G. Agha, P. Wegner, and A. YonezawRBgsdsych
Directions in Concurrent Object-Oriented Programmjmages 107-150. MIT Press, 1993.

[25] G. Milicia and V. Sassone. The inheritance anomaly: ten years afté?rdeeedings of the
2004 ACM symposium on Applied computipgges 1267-1274. ACM Press, 2004.

[26] O. Nierstrasz. A tour of Hybrid — A language for programming with active objects. In
D. Mandrioli and B. Meyer, editorsAdvances in Object-Oriented Software Engineering
pages 167-182. Prentice Hall, 1992.

[27] N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In
P. Devanbu and J. Poulin, editoRRroc. 5th Intl. Conf. on Software Reuse (ICSRigges
206-215. IEEE Computer Society Press, 1998.

[28] A. Yonezawa.ABCL: An Object-Oriented Concurrent Systefithe MIT Press, 1990.

