
Toward Reflective Application Testing in Open Environments

Eyvind W. Axelsen, Einar Broch Johnsen, and Olaf Owe
Department of Informatics, University of Oslo

Abstract
Many distributed applications can be understood in terms of components
interacting in an open environment such as the Internet. Open environments
are subject to change in uncontrollable ways, as other applications may arrive,
change, or disappear. In order to test the behavior of components in such
environments, it is necessary to build a testing environment which reflects this
highly unpredictable behavior. To avoid over-specification of environment
components, we use the observable communication history to abstractly
reflect the state of communicating components. Rewriting logic has been
used to capture many different systems of concurrency and communication in
an executable manner. In this paper, we show how rewriting logic models can
be extended with observable communication histories in a transparent way
and suggest using this extension to capture a form of assumption guarantee
specification based testing of components in open environments.

1 Introduction
The aim of this paper is to suggest an application of rewriting logic [18] to test
the behavior of software units inopen environmentssuch as the Internet. An open
environment is an environment in which various other software units exist, and no specific
knowledge about these units may be assumed. A software unit in this setting may be a
distributed application in an open distributed system, but also an off-the-shelf component
which should behave properly in a variety of environments. To keep the exposition simple,
we will model software units byobjectscommunicating by means ofmessage passing
in this paper, keeping in mind that the approach may in principle be extended to “real
components” or distributed applications.

It is a major challenge to predict the behavior of objects evolving in open
environments, in order to ensure and maintain behavioral properties such as safety,
availability, quality of service, various forms of fault tolerance, etc. Formal approaches
to this challenge include methods for verification, by means of e.g. assertion systems
such as Hoare logic, type checking, and model checking. A disadvantage of these
approaches is that they generally depend on knowledge of the implementation details
of the systems they consider. In contrast, approaches based on testing create an artificial
environment in which the object can be subjected to controlled test runs. In contrast to
verification methods, testing cannot generally ensure that components are well-behaved
at all times, but may still give revealing insights into a component’s behavior. This
paper takes a testing approach to object analysis. The goal of the paper is to show
how open environments can be mimicked by underspecified formal descriptions based
onobservable behaviorin order to test object behavior.

In: C. Rong (Ed.):Proc. Norwegian Informatics Conference (NIK 2004), p. 192–203.
Tapir Forlag, Nov. 2004.

Testing is done in an executable platform defined usingrewriting logicand the Maude
system [5,18]. Rewriting logic can naturally express and combine many different models
of communication and concurrency. Further, rewriting logic isreflective [3, 6] in a
mathematically precise manner: it is possible to reason formally about reflective rewriting
inside rewriting logic itself, and to execute reflective specifications at the Maudemeta-
level. The use of reflection is essential to our approach, allowing for guided search and
system monitoring in a modular, composable, and hierarchical way. Reflection may
be used to define execution strategies for an executable object model, for example a
nondeterministicexecution strategy is proposed in [16]. Reflective specifications support
a layered architecture where several specifications may be given at each level. Reflection
can be used to extend a system model with e.g. logging facilities [23]. In this paper,
we transparently extend an executable system model with its history of observable
communications [7, 12] at the meta-level, and define execution strategies at the meta-
level which are influenced by requirements on the history. This paper gives an overview,
further technical details of the implementation of this work in Maude may be found in [1].

Paper overview: Section 2 briefly reviews a notion of behavioral interface and
introduces the example of the paper. Section 3 introduces rewriting logic and Maude.
Section 4 provides an executable Maude specification of the running example. Section 5
explains how histories are introduced into the Maude model. Section 6 considers testing
of observable behavior. Section 7 provides an executableabstractMaude specification
of the running example. Section 8 combines two meta-level strategies to create an open
testing environment. Section 9 concludes the paper.

2 Specifications of Observable Behavior
In the open distributed setting, objects in the environment may come from third-party
manufacturers, and their implementation details may be unavailable for various reasons.
Reasoning about the overall system behavior should be based on abstract specifications
of system components. Specifications in terms of observable behavior seem particularly
attractive, assuming that components have behavioral interfaces that describe their use. A
component may have many interfaces corresponding to different behavioral requirements.

Interaction histories. In a distributed environment, object behavior may be given in
terms of an assumption guarantee specification [17]. The assumption is a requirement on
the behavior of the objects in the environment. As customary in the assumption-guarantee
paradigm, the guaranteed invariant need only hold when the environment respects the
assumption. In our setting, the paradigm is adjusted to deal with input and output
aspects of communicating systems. An object’s observable history, i.e. the trace of all
communication events between the object and its environment, represents an abstract view
of its state, available for reasoning about past and present behavior. An object’s behavior
may be determined by its communication history up to present time, and a specification
of its behavior may be given as a predicate on finite traces. The approach emphasizes
mathematically intuitive concepts such as generator inductive function definitions and
finite sequences, avoiding fix-point semantics and infinite traces [15].

Behavioral interfaces. In order to specify object behavior in a generic way, we
introduce interfaces which may be associated with objects. Interfaces that contain
semantic requirements can be understood asbehavioral interfaces. An interface can be

implemented by different classes and a class can implement different interfaces. If a
class implements an interface, all the objects of the class must behave according to the
semantic requirements of the interface, which describe observable behavior in terms of
possible communication histories. For further technical details and discussion the reader
is referred to [13,15]. We shall here proceed by an example.

Example. Consider the well-known dining philosophers example [9] withN philosoph-
ers seated around a table. They are thinking deeply, but may occasionally need to eat from
a common resource. Each philosopher is equipped with one chopstick, but in order to eat
two chopsticks are needed. Hence, a philosopher may request and return its right-hand
neighbor’s chopstick, and lend its stick to its left-hand neighbor in response to a request.
These are the possible philosopher operations. We assume that philosophers are initially
thinking, but at some point they may request their neighbor’s chopstick, and lend their
chopstick to their left-hand neighbor. A philosopher which controls two chopsticks may
eat, return the requested chopstick, and resume thinking.

We specify an interfacePhil, describing observable philosopher behavior, including
eating, thinking, and communication concerning the exchange of sticks. LetX andY be
variables ranging over possible philosophers. Semantically, we represent an interaction
by a triple 〈X,Y,M〉, whereX is the caller,Y the callee, andM a message. Remark
that think andeat are internal interactions, i.e.X = Y, while requestStick, returnStick
andlendStick are external, i.e.X 6= Y. The behavior of a philosopher is formulated in
terms of acceptable communication histories, which observationally reflect the state of a
philosopher. The following specification ensures that eating requires two sticks, thinking
no borrowed stick, and that the borrowing and lending of sticks are done properly:

interface Phil
begin

opr think
opr eat
opr requestStick — request stick from neighbor
opr returnStick — return stick to neighbor
opr lendStick — lend stick to neighbor

inv AccBeh(this,H)
whereAccBeh(X,ε)≡ true

AccBeh(X,H ` 〈X,Y, think〉)≡ AccBeh(X,H))∧¬otherStick?(X,H)
AccBeh(X,H ` 〈X,Y,eat〉)≡ AccBeh(X,H)∧myStick?(X,H)∧otherStick?(X,H)
AccBeh(X,H ` 〈X,Y, requestStick〉)≡ AccBeh(X,H))∧¬otherStick?(X,H)
AccBeh(X,H ` 〈X,Y, returnStick〉)≡ AccBeh(X,H)∧otherStick?(X,H) ∧

H /{〈X,Y, lendStick〉,〈Y,X, returnStick〉} ew lendStick
AccBeh(X,H ` 〈X,Y, lendStick〉)≡ AccBeh(X,H)∧myStick?(X,H) ∧

H /{〈Y,X, requestStick〉,〈X,Y, lendStick〉} ew requestStick
AccBeh(X,H ` 〈X′,Y,M〉)≡ AccBeh(X,H) if (X 6= X′)

myStick?(X,H)≡ ¬(H /{〈X, , lendStick〉,〈 ,X, returnStick〉} ew lendStick)
otherStick?(X,H)≡ (H /{〈 ,X, lendStick〉,〈X, , returnStick〉} ew lendStick)

end

In the definition ofAccBeh, each line corresponds to a possible generator case. The free
variables in each equation have an implicit universal quantifier, reminiscent of for instance
ML, letting match any term. The empty sequence is denotedε, andew denotes “ends

with”. The restriction of a historyh to a setSof messages is denotedh/S. Note that the
specification is underspecified with regard to philosopher behavior. In particular, we do
not know if a philosopher will lend its chopstick to its neighbor when hungry (i.e. has
made arequestStick), and if a hungry philosopher will make many stick requests.

3 Rewriting Logic and Maude
This section gives a brief introduction to rewriting logic [18] and Maude [5]. A rewrite
theory is a 4-tupleR = (Σ,E,L,R), where the signatureΣ defines the function symbols
of the language,E defines equations between terms,L is a set of labels, andR is a set
of labeled rewrite rules. From a computational viewpoint, a rewrite rulet −→ t ′ may
be interpreted as alocal transition ruleallowing an instance of the patternt to evolve
into the corresponding instance of the patternt ′. Rewrite rules apply to fragments of a
state configuration. If rewrite rules may be applied to non-overlapping fragments of the
configuration, the transitions may be performed in parallel. Consequently, rewriting logic
(RL) is a logic which easily captures concurrent change. A number of concurrency models
have been successfully represented in RL [5, 18], including Petri nets, CCS, Actors,
and Unity, as well as the ODP computational model [19] and real-time systems [20].
RL is also used to define the operational semantics of the Creol language [14, 16], and
additionally offers its own model of object orientation [5].

Informally, a state configuration in RL is a multiset of terms of given types. These
types are specified in (membership) equational logic(Σ,E), the functional sublanguage
of RL which supports algebraic specification in the OBJ [11] style. When modeling
computational systems, configurations may include the local system states, where
different parts of the system are modeled by terms of the different types defined in the
equational logic. An RL object is a term of the type〈O : C | a1 : v1, . . . , an : vn〉, whereO
is the object’s identifier,C is its class, theai ’s are the names of the object’s attributes, and
thevi ’s are the corresponding values [5].

RL extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules, supplementing the equations which
define the term language. Assuming that all terms can be reduced to normal form,
rewrite rules transform terms modulo the defining equations ofE. Each rule describes
how a part of a configuration can evolve in one transition step. If several rules can be
applied to distinct subconfigurations, they can be executed in a concurrent rewrite step.
Consequently, concurrency is implicit in RL.

Conditional rewrite rules are allowed, where the condition can be formulated as a
conjunction of rewrites and equations which must hold for the main rule to apply:

crl [label] : subconfiguration−→ subconfigurationif condition.

Rules in RL may be formulated at a high level of abstraction, closely resembling a
compositional operational semantics. In fact, modular structural operational semantics
can be uniformly mapped into RL specifications [8].

Reflection and the Maude Meta-Level. Rewriting logic is reflective in the sense that
there is a finitely presented rewrite theoryU that is universal, meaning that we can
represent any finitely presented rewrite theoryR (includingU itself) in U [4].

LetC andC′ be configurations andR be a set of rewrite rules. We writeR `C→C′ to
express thatC may be rewritten toC′ in the rewrite theoryR . Informally, a configuration

C and the setR of rewrite rules of a Maude specification may be represented as termsC
andR at the meta-level. Using this notation, we have the equivalence

R `C→C′ ⇔U ` 〈R ,C〉 → 〈R ,C′〉,
which states that if a termC can be rewritten to a termC′ in a rewrite theoryR , then the
meta-representation ofC in R , 〈R ,C〉 can be rewritten to the meta-representation ofC′

in R , 〈R ,C′〉, in the universal rewrite theoryU, and vice versa.
Meta-level rewrite rules may be used to select which rule fromR to apply to which

subterm ofC. This is done by a sequential interpreter function which takes as arguments
a finitely presented rewrite theoryR , a termC, and a deterministic strategyS. Details on
the theory and use of reflection in rewriting logic and Maude may be found in [3,4,6].

4 A Maude Model of the Dining Philosophers
The dining philosophers of Section 2 are now implemented in Maude. In order to define
thesynchronization constraints, we introduce internal attributes in the philosopher objects
to determine their ability to perform the different possible actions. LetC and D be
variables ranging over the sortCid of concretephilosopher identifiers, a subsort ofPhil.
A concrete philosopher with internal structure may be defined as follows:

〈C : Cid|state: _,myStick: _,nbrStick: _, leftNbr : _, rightNbr : _〉
The philosophers interact asynchronously by passing messages to each other, as well as
by sending synchronous messages to themselves representing internal actions.

A message consists of an envelope with a sender and a receiver and the actual
message content (or action) represented by aquoted identifier. In Maude, messages are
conventionally defined as follows:

msg_ from_ to_

We are now able to define synchronization constraints directly in terms of a philosopher’s
internal state. Ahungryphilosopher may attempt to gain control of two chopsticks in
order to eat. Afedphilosopher may think. Hence, thestatemay be eitherhungryor fed.
When a philosopher is hungry, it will attempt to acquire chopsticks. When it controls two
chopsticks, it may eat, release the chopsticks, and resume thinking. This can be expressed
by the following rewrite rules, ignoring attributes that are not needed for synchronization
in the style of Full-Maude [5]:

rl [think] : 〈C : Cid|state: fed〉 −→ 〈C : Cid|state: fed〉 (msg ’think from C to C) .

rl [eat] :
〈C : Cid|state: hungry,myStick: yes,nbrStick: yes〉

−→ 〈C : Cid|state: hungry,myStick: yes,nbrStick: yes〉 (msg ’eat from C to C) .

rl [requestStick] :
〈C : Cid|state: fed,myStick: yes,nbrStick: no, rightNbr : D〉

−→ 〈C : Cid|state: hungry,myStick: yes,nbrStick: requested, rightNbr : D〉
(msg ’requestStick from C to D) .

rl [returnStick] :
〈C : Cid|state: hungry,myStick: yes,nbrStick: yes, rightNbr : D〉

−→ 〈C : Cid|state: fed,myStick: yes,nbrStick: no, rightNbr : D〉
(msg ’returnStick from C to D) .

rl [lendStick] :
〈C : Cid|state: fed,myStick: yes〉 (msg ’requestStick from D to C)

−→ 〈C : Cid|state: fed,myStick: no〉 (msg ’lendStick from C to D) .

rl [recieveRequestedStick] :
〈C : Cid|nbrStick: requested, rightNbr : D〉 (msg ’lendStick from D to C)

−→ 〈C : Cid|nbrStick: yes, rightNbr : D〉
rl [recieveReturnedStick] :
〈C : Cid|myStick: no, rightNbr : D〉 (msg ’returnStick from D to C)

−→ 〈C : Cid|myStick: yes, rightNbr : D〉
Note that in this specification, a hungry philosopher will not render its chopstick.

5 Extending the Model with Histories
In the executable model, the messages corresponding to the philosophers’ actions can
be recorded in acommunication history. In this section we will look at how to utilize
Maude’s meta-level capabilities during execution of the specified model to record the
history in atransparentway, i.e. leaving the original specification unchanged.

In order to execute a specification at the meta-level, we develop a customstrategy, i.e.
rewrite rules which apply to the meta-representation of the model. This strategy makes
use of an objectEngineto store the information we need in order to control consecutive
meta-level rewrites. The engine object is defined as follows:

〈E : Engine|curTerm: _,curModule: _, labels: _, failedRules: _〉

This object contains several attributes, whose values are set at run-time;curTerm
contains the meta-representation of the current configuration,curModule is the meta-
representation of the name of the object-level module in which the rewrites will be
performed,labels is a list of rule labels from the modulecurModule, andfailedRules
contains a list of rule labels for rules that could not be applied tocurTerm.

The communication history is kept in a Maude object,History, which is distinct from
the objects of the object-level model and is defined as follows:

〈H : History|h : _〉

The only attribute of this object,h, will contain the actual communication history of the
system in the form of a message list recorded at runtime.

By defining a custom strategy we gain control over when a meta-level rewrite is
performed, and hence we are able to inspect the current state in-between rewrites. This
is the key point that enables us to record a communication history while executing a
specification, since we can now check whether the application of a given rewrite rule to
a given configuration results in a new message being sent, by comparing the meta-level
representations of the configuration before and after the rule application, respectively.

Our strategy is implemented by a conditional rewrite ruleexec, defined below. The
actual term rewriting is performed by Maude’s built-indescent functionmetaXapply(R ,
t, l , σ, n, b, m). This (partial) function provides fine-grained control over rewriting at the
meta-level, allowing us to specify which rewrite rule (l) is to be applied to which term
(t), and at which position (m) within the term the rule is to be applied if there are several
possibilities. For a more detailed description of this function, see [5]

The functionmetaXapplyreturns a four-tuple consisting of the resulting term, the
type of the term, a substitution and a context, and we use a functiongetTermto extract
the rewritten term from this tuple. Note that whitespace in Maude denotes list concatena-
tion: If L is a label andLABELS is a list of labels, thenL LABELS is a non-empty list
of labels.

crl [exec] :
〈E : Engine|curTerm: T,curModule: MOD, labels: L LABELS, failedRules: FR〉
〈H : History|h : ML〉

−→
if metaXapply([MOD], T, L, none, 0, unbounded, 0) =/= failurethen
〈E : Engine|curTerm: getTerm(metaXapply([MOD],T, L, none, 0, unbounded, 0)),

curModule: MOD, labels: LABELS L, failedRules: nil〉
〈H : History|h : ML + getNewMessages(T, getTerm(metaXapply([MOD],

T, L, none, 0, unbounded, 0)), MOD, ML)〉

else
〈E : Engine|curTerm: T,curModule: MOD, labels: LABELS L, failedRules: FR〉
〈H : History|h : ML〉

fi
if length(FR) < length(L LABELS) .

This strategy applies rules from thelabelslist in a round-robin fashion to the meta-level
configuration incurTerm. (Remark that we may define other strategies for rule selection
than round-robin. In [16], we have shown how to extend a similar strategy such that the
rules are selected randomly using a pseudo-random number generator.) In the event that
no rule is applicable, the execution will terminate.

The auxiliary functiongetNewMessagescompares the termT with the term resulting
from applying (withmetaXapply) the rule labeledL to T. If there are new communication
messages in the new configuration, the attributeh of the history object is extended with
the new messages. If there are several new messages, these are caused by concurrent
actions and we can add them to the history in an arbitrary order.

Using the strategy defined above, we may execute a Maude specification, such as the
one for the dining philosophers problem introduced in Section 4, and record any messages
that are being sent, without changing anything in the original specification. Hence, the
analysis capabilities obtained by recording the history may be added to the model when
needed and removed after sufficient analysis.

6 A Strategy for Testing Observable Behavior
The communication history that is built at runtime when applying the rewrite strategy
introduced in Section 5, can be used as input to atest oracle, blocking execution if
a given Maude specification violates a given behavioral specification. This can be
achieved by extending the strategy with functionality for checking whether a given rule
application will lead to an illegal state, as specified by a given predicate. Taking the
observational approach, we consider predicates on communication histories. In order to
obtain a compositional system, the predicate on the global history will be the conjunction
of a number of behavioral interfaces, associated with different objects. Behavioral
specifications for specific object-level objects are represented by trace predicates on the
global history, restricted to an appropriate subset of possible communication events. The
overall picture is illustrated by Figure 1: LetR be the object-level set of rewrite rules
andC a system state. A meta-level strategyS controls how the choice of rule is made
for application at the object level. The strategy is here parameterized by a predicate on
communication histories. For the testing strategy of this section, afail-stop strategy is
defined, which blocks further execution once the system attempts to violate the predicate
P on the global history. If execution is blocked by the strategy, the recorded history

Rule set: Configuration:

Meta-level rewrite system: Sfail-stop(P(h)) R ,C ,〈H : History|h : _〉

↓ Control ↑ History logger

Object level rewrite system: R C

Figure 1: Reflective testing of observable behavior.

provides an error trace for the system run, describing how the specification was violated.
In order to implementfail-stop testing in Maude, we first define a constantH of

a new sortHistory, which we will use as a placeholder for the actual communication
history H (which will be recorded during execution, and hence is not available at the
time of specification) in the specification of our predicates. Furthermore, we define a
sort Pred, the sort of predicates on communication histories. For the running example,
acceptable behavior for a system of philosophers behaving according to the behavioral
interface defined in Section 2, can then be expressed by the Maude operator

op AccBeh : History→ Pred.

During execution, the predicate needs to be checked between each rewrite step. For this
purpose, we introduce the functionCheckPredicate: Pred×MsgList→ Bool. This function
will be called by the strategy from Section 5, and will parse the predicate specification,
call auxiliary predicate checking functions and return a boolean value indicating whether
the message list is in compliance with the predicate or not.

Returning to theAccBeh predicate, the case in whichthink is the last message in the
history can be specified equationally in Maude as follows:

eqAccBeh(ML + msg ’think from X to Y)= AccBeh(ML)and not otherStick?(X,ML).
eqotherStick?(X,nil) = true .
eqotherStick?(X,ML + msg ’returnStick from X to Y) = f alse.
eqotherStick?(X,ML + msg ’lendStick from Y to X) = true .
eqotherStick?(X,ML + M) = otherStick?(X,ML) [otherwise].

Here,X andY are variables of sortPhil, M is a message of sortMsg, andML is the
communication history in the form of a message list as recorded by our strategy during
execution. The last equation forotherStick?is chosen only when the others do not match.
Note that since the predicate in the Maude specification is aglobalpredicate that spans all
objects, there is no need to pass the object identifier as a separate parameter toAccBeh.

If the communication history after a given rewrite is not in compliance with the
predicate, the execution will terminate and a “failure object” will be inserted into the
configuration to indicate what went wrong. For more details on the implementation of the
predicate check, see [1].

7 An Executable Abstract Prototype of Dining Philosophers
We now define a prototype philosopher model in Maude. The idea is to postpone design
decisions concerning the concrete internal structure and rather define the behavior of the
philosopher in terms of restrictions on the history of its observable actions. LetA andB

be variables ranging over object identifiers of sortAid for abstractphilosophers. Define
a sortAbsPhil with terms〈A : Aid | leftNbr : _, rightNbr : _〉. Except for philosopher
identities and their left- and right-hand side neighbors, we completely ignore any internal
structure in the philosopher objects. Consequently, synchronization constraints cannot be
expressed in terms of the internal state. The possible actions of the abstract philosophers
are captured by the following rewrite rules:

rl [think] : 〈A : Aid | 〉 −→ 〈A : Aid | 〉 (msg ’think from A to A) .

rl [eat] : 〈A : Aid | 〉 −→ 〈A : Aid | 〉 (msg ’eat from A to A) .

rl [requestStick] :
〈A : Aid | rightNbr : B〉

−→ 〈A : Aid | rightNbr : B〉 (msg ’requestStick from A to B) .

rl [returnStick] :
〈A : Aid | rightNbr : B〉

−→ 〈A : Aid | rightNbr : B〉 (msg ’returnStick from A to B) .

rl [lendStick] :
〈A : Aid | leftNbr : B〉 −→
〈A : Aid | leftNbr : B〉 (msg ’lendStick from A to B) .

These rules do not express any synchronization constraints on the interactions, only
which philosophers may interact. Also note, that rules for receiving messages are no
longer needed, since no internal state change takes place in the abstract philosopher
objects. Instead, a simple consumption rule can be used to remove messages from the
configuration:

rl [consumeMsg] : 〈A : Aid | 〉(msg M from B to A)−→ 〈A : Aid | 〉 .

8 Simulating Open Environments by Behavioral Interfaces
In an open environment, objects may be created and destroyed dynamically during
execution. With our abstract philosopher specification, this can be modeled by the
following rewrite rules:

rl [create] :
〈A : Phil| rightNbr : B〉 〈B : Phil| leftNbr : A〉

−→ 〈A : Phil| rightNbr : A+ B〉 〈B : Phil| leftNbr : A + B〉
〈A+ B : Aid | leftNbr : A, rightNbr : B〉

.

rl [destroy] :
〈A : Phil| rightNbr : B〉 〈B : Aid | leftNbr : A, rightNbr : C〉 〈C : Phil| leftNbr : B〉

−→ 〈A : Phil| rightNbr : C〉 〈C : Phil| leftNbr : A〉 .

In the create rule, the new abstract philosopher object is inserted between two
existing (abstract or concrete) philosopher objects. The new philosopher will have the
concatenation of the existing objects’ identifiers as its identifier. In thedestroyrule, an
abstract philosopher object in-between two other philosopher objects is deleted, and the
remaining philosopher objects set theirleftNbr andrightNbr properties accordingly.

Using our abstract dining philosopher specification with the rules introduced above,
we can simulate an open environment the behavior of which is exclusively defined by
a behavioral specification in the form of predicates at the meta-level. As mentioned in
Section 5, the meta-level can be used to define a strategy which stops the execution of a

Rule set: Configuration:

Meta-level: Sforce(P1(h/α1))∧Sfail-stop(P2(h/α2)) R 1∪R 2,(C1 C2),〈H : History|h : _〉

↓ Control ↑ History logger

Object level: R 1∪R 2 C1 C2

Figure 2: Reflective testing of observable behavior in open environments.

specification if a given rule application violates the predicate. However, when defining
an abstract environment where every rule is applicable at any time (because there is no
synchronization code in the objects), this strategy is not desirable here. Instead, we want
to forcethe abstract specification to behave in compliance with the predicate. This can be
achieved by a similar strategy, using the mechanisms introduced in Section 6. However,
where thefail-stopstrategy halts the execution when the application of an enabled rule
will break the predicate, the newforce strategy will try another enabled rule from the
labelslist of theEngineobject instead. Execution will first terminate when no rule can
be applied without violating the predicate.

The abstract environment specification can now be used as a “testbed” for a number
of actual programmed components, like the philosophers from Section 2. LetR 1 be an
object-level set of rewrite rules which may be applied to a system configurationC1, the
system state of abstract objects (the open environment), and letR 2 be the object-level set
of rewrite rules which may be applied to the concrete objects in a system configuration
C2 (the given components, with synchronization constraints on the internal state). Let
α1 andα2 be messages associated with the objects ofC1 andC2, respectively. Messages
may be exchanged freely between all objects, so the two sets are not disjoint. LetP1

andP2 be predicates observationally specifying the environment and actual components,
respectively. The meta-level strategySforce restricts rule application fromR 1 to acceptable
environment behavior. This provides an abstract, open environment which may behave
in any way that does not violate the specificationP1. We here combine two meta-level
strategies which react differently to the violation of predicates:force will restrict rule
application so that the communication history conforms to the predicate, andfail-stop
will halt the execution and produce an error object if the predicate is attempted violated.
By specifying one predicate that spans only messages from the programmed object, and
one that spans all objects, and by checking the former infail-stop mode and the latter in
force mode, we can test whether our programmed component execute correctly provided
that the environment does so. This scenario is illustrated by Figure 2.

To illustrate this scheme by the running example of this paper, we may consider a
system of dining philosophers, where some philosophers are implemented, i.e. belong
to the concrete philosophers defined in Section 4. We want to test that these concrete
objects behave according to the requirements of thePhil interface by means of thefail-
stop strategy. To create an environments in which they interact with other, abstract
philosophers, we introduce the abstract philosophers of Section 7. In order to make
the abstract philosophers behave according to the samePhil interface, we use theforce
strategy. In Figure 2, thePhil interface will be used as both predicatesP1 and P2.

Alternatively, if the Phil interface was given in a rely/guarantee style with minimal
requirements to the environment, the latter could be used in force mode and the guarantee
part in fail-stop mode.

9 Conclusion and Future Work
This paper shows how abstract specifications of dynamic environments may be captured
very naturally in a rewriting logic model extended with behavioral interfaces. Due to
the reflective character of rewriting logic, supported by Maude, it is possible to define
execution strategies at the meta-level. In this paper, we have used this facility to test
whether an executable model is well behaved with respect to a number of requirements
on the observable behavior of the model, defined as behavioral interfaces.

Further, we show how meta-level strategies may be used to execute a prototype
model defined by its observable behavior, without deciding on its implementation details.
Combining these meta-level strategies, we obtain abstract testing environments for models
of components or distributed applications, in which the environment is unspecified but
subjected to certain minimal observational requirements. Previous approaches to history-
based testing, e.g. [10, 21], and automata-based approaches, e.g. [2, 22], require specific
test cases to be defined. In contrast, our approach usesrandom testingand assumption
guarantee specifications to defineopen environments. Further, the environment and
the test oracle are defined within the same formalism. Methods to generate additional
restrictions on assumptions to obtain reasonable coverage remain to be addressed.

Some experiments with socket extensions to Maude suggest that it is possible to
employ Maude processes as demonstrated in this paper to act as a testing environment
and to simulate an open environment for actual components communicating by means of
a predefined set of messages with the Maude process via sockets. However, future work
in this vein remains.

References
[1] E. W. Axelsen. A meta-level framework for recording and utilizing communication

histories in Maude. Master’s thesis, Department of Informatics, University of Oslo,
Norway, Aug. 2004.

[2] S. Barbey, D. Buchs, and C. Péraire. A theory of specification-based testing
for object-oriented software. InProceedings of EDCC2 (European Dependable
Computing Conf.), LNCS 1150, pages 303–320. Springer, 1996.

[3] M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Meta-
programming Applications. CSLI Publications, Stanford, California, 2000.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Marí-Oliet, and J. Meseguer. Meta-
level computation in Maude. In2nd Intl. Workshop on Rewriting Logic and its
Applications (WRLA’98), volume 15 ofElectronic Notes in Theoretical Computer
Science. Elsevier, 1998.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic.Theoretical
Computer Science, 285:187–243, Aug. 2002.

[6] M. Clavel and J. Meseguer. Reflection in conditional rewriting logic.Theoretical
Computer Science, 285:245–288, Aug. 2002.

[7] O.-J. Dahl. Can program proving be made practical? In M. Amirchahy and D. Néel,
editors,Les Fondements de la Programmation, pages 57–114. Institut de Recherche
d’Informatique et d’Automatique, Toulouse, France, Dec. 1977.

[8] C. de Oliveira Braga. Rewriting Logic as a Semantic Framework for Modular
Structural Operational Semantics. PhD thesis, Pontifícia Universidade Católica do
Rio de Janeiro, 2001.

[9] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[10] R.-K. Doong and P. G. Frankl. The ASTOOT approach to testing object-oriented
programs.ACM Trans. Softw. Eng. Methodol., 3(2):101–130, 1994.

[11] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing
OBJ. In J. Goguen, editor,Applications of Algebraic Specification using OBJ.
Cambridge, 1993.

[12] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

[13] E. B. Johnsen and O. Owe. A compositional formalism for object viewpoints. In
B. Jacobs and A. Rensink, editors,Proc. 5th Intl. Conf. on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’02), pages 45–60. Kluwer, Mar. 2002.

[14] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. InProc. 2nd IEEE Intl. Conf. on Software Engineering and
Formal Methods (SEFM’04), pages 188–197. IEEE CS Press, Sept. 2004.

[15] E. B. Johnsen and O. Owe. Object-oriented specification and open distributed
systems. In O. Owe, S. Krogdahl, and T. Lyche, editors,From Object-Orientation
to Formal Methods: Essays in Memory of Ole-Johan Dahl, LNCS 2635, pages 137–
164. Springer, 2004.

[16] E. B. Johnsen, O. Owe, and E. W. Axelsen. A run-time environment for concurrent
objects with asynchronous methods calls. InProc. 5th Intl. Workshop on Rewriting
Logic and its Applications (WRLA’04), To appear in ENTCS. Elsevier, 2004.

[17] C. B. Jones.Development Methods for Computer Programmes Including a Notion
of Interference. PhD thesis, Oxford University, UK, June l981.

[18] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96:73–155, 1992.

[19] E. Najm and J.-B. Stefani. A formal semantics for the ODP computational model.
Computer Networks and ISDN Systems, 27:1305–1329, 1995.

[20] P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science, 285:359–405, 2002.

[21] B. Tyler and N. Soundarajan. Black-box testing of grey-box behavior. In A. Petrenko
and A. Ulrich, editors,3rd Intl. Workshop on Formal Approaches to Testing of
Software (FATES 2003), LNCS 2931, pages 1–14. Springer, 2004.

[22] L. Van Aertryck, M. Benveniste, and D. Le Metayer. CASTING : A formally based
software test generation method. InICFEM’97, First IEEE Intl. Conf. on Formal
Engineering Methods, pages 101–110, Nov. 1997. IEEE CS Press.

[23] N. Venkatasubramanian and C. L. Talcott. Reasoning about meta level activities in
open distributed systems. InProc. the 14th Annual ACM Symp. on Principles of
Distributed Computing (PODC ’95), pages 144–152, Aug. 1995. ACM Press.

