A Dynamic Binding Strategy for Multiple Inheritance
and Asynchronously Communicating Objects

Einar Broch Johnsen and Olaf Owe

Department of Informatics, University of Oslo, Norway
{einarj,olaf}@ifi.uio.no

Abstract This paper considers an integration of asynchronous coruation,
virtual binding, and multiple inheritance. Object oriditta is the leading para-
digm for concurrent and distributed systems, but the tygsyinchronized RPC
communication model seems unsatisfactory in the diseibaetting. Asynchron-
ous messages are better suited, but lack the structure aaiplifie of tradi-
tional object-oriented methods. The integration of messagthe object-oriented
paradigm is unsettled, especially with respect to inheciaand redefinition.
Asynchronous method calls have been proposed in the Cireglidage, reducing
the cost of waiting for replies in the distributed enviromhehile avoiding low-
level synchronization constructs such as explicit sigraliA lack of reply to a
method call need not lead to deadlock in the calling objemtoChas an opera-
tional semantics defined in rewriting logic. This paper ddes a formal opera-
tional model of multiple inheritance, virtual binding, aasynchronous commu-
nication between concurrent objects, extending the seéosanitCreol.

1 Introduction

Object orientation is the leading paradigm for concurrewt distributed systems. The
importance of such systems is increasing in society, dyittie need for formal models
and reasoning support for object-oriented distributedesys. With the current domin-
ation of languages such as Java and C++, one may think thatithenly one way to
understand object-oriented languages. In the settingsifildlited systems, these lan-
guages may be criticized for their approach to concurresoyell as to communica-
tion. An alternative approach is taken in the Creol languegecurrent objects typed by
interfaces which communicate by means of asynchronousadetlls. This commu-
nication model integrates asynchronous message pasgimtheihigh-level structuring
mechanism of method definition and invocation [20].

In this paper we discuss multiple inheritance in the settihgpen distributed sys-
tems and consider the combination of multiple inheritamzk\artual (or late) binding.
Multiple inheritance provides a flexible way to combine slagerarchies, but is gener-
ally considered error-prone. Multiple inheritance is afexplained in terms of run-time
data structures such as virtual pointer tables [38], whietfcamplex and hard to under-
stand. High-level formal treatments are scarce (e.g., [[5634]) but needed to clarify
intricacies, thus facilitating design and correctnesseoaag for programs using mul-
tiple inheritance. In this paper, an operational semawagduring multiple inheritance
and virtual binding of methods for Creol is defined, extegdirork reported in [22].

In: F.S. de Boer, M. Bonsangue, S. Graf, W.-P. de Roever JEds.
Proc. 3rd. Intl. Symp. on Formal Methods for Components abj€@s (FMCO’04),
p. 274-295, LNCS 3657, Springer-Verlag, Nov. 2005.

In particular, common restrictions on the name space of austho avoid name
conflicts either severely limit the use of class inheritamickecome impractical in large
class hierarchies and break the encapsulation principlddss inheritance. In order to
maintain local reasoning control without abandoning comrigatures of virtual bind-
ing such as method overloading and overriding, virtual migaf method calls must be
handled carefully. For this purpose, a dynamiioned binding strategig introduced in
this paper and formalized with an operational semanticsrgia rewriting logic. Re-
writing logic [29] is chosen due to its high level of abstiantwith inherent support for
distribution, concurrency, and asynchronous commurtnats well as its simulation
and model checking facilities through the Maude tool [8, 30jis allows us to focus
the formalization on issues related to inheritance andi@irbinding. The strategy is
integrated in the Creol interpreter in Maude. An example alestrates that a form of
binding anomaly is avoided with this strategy.

Paper overviewSect. 2 provides a background discussion on multiple itdrese.
Sect. 3 introduces the Creol language. Sect. 4 extends @ittomechanisms for mul-
tiple inheritance and pruned virtual binding, Sect. 5 iitates the mechanisms, and
Sect. 6 defines its operational semantics. Sect. 7 congielated work and Sect. 8
concludes the paper.

2 Inheritance: Reuse of Behavior and Reuse of Code

Inheritance is a powerful feature of object orientatior, ibsiexact role as a structur-
ing mechanism for programs varies between different olgeented languages. With
singleinheritance, a class is derived from one direct ancestasclahile withmul-
tiple inheritance there may be several direct ancestors. lainegtmay be understood
as a mechanism for sharing and specialization of behaviametisas code. Formal ap-
proaches to inheritance tend to favor the first interpretiséind understand inheritance
in terms of behavioral reuse, obeying thabstitutabilityprinciple: As a subclass is a
specialization of a superclass, an object of the subclagsmaaquerade as an object of
the superclass. This interpretation of inheritance hatdaah active field of research on
behavioral subtyping [2, 14, 27], identifying conditiorts afe substitutability. Aype
describes a collection of objects which share the sameredtgiobservable behavior.
Subtyping provides a powerful structuring mechanism fdinileg, specializing, and
understanding the external behavior of objects.

A classdescribes a collection of objects which share the samenltstructure; i.e.,
attributes and method definitions. Code inheritance pesvath equally powerful mech-
anism for defining, specializing, and understanding theeirafive structure of classes
through code reuse and modification. Class extension anubeheedefinition are con-
venient both for development and understanding of coddin@aluperclass methods in
a subclass method enabtesise in redefined methadeaking the relationship between
the method versions explicit. Thus, this facility is clgestiperior to cut-and-paste pro-
gramming with regard to the ease with which existing code beaiynspected and under-
stood and it is also clearly superior to inheritance medmaaiwhich do not distinguish
between locally defined and inherited definitions. A denoteatl semantics for code
sharing and reuse based on single inheritance is given.in [9]

275

Although many languages identify the subclass and subsfpéons, in particular
for parameter passing, several authors argue that inheeitaelations for code and for
behavior should be distinct [2,5, 10, 37]. From the pragmpdint of view, combin-
ing these relations leads to severe restrictions on codsretiich seem unattractive
to programmers. From a reasoning perspective, the separdtthese relations allows
greater expressiveness while providing type safety. leialsolve the conflict between
unrestricted code reuse in subclasses, and behaviorgpsufpaind incremental reason-
ing control [27,37], we use behavioral interfaces [19, 2lfyppe object variables (i.e.,
references) and external (remote) calls, and allow maltipheritance for both inter-
faces and classes. Interface inheritance is restricteddoraof behavioral subtyping,
whereas class inheritance may be used freely for code réuslass may implement
several interfaces, provided that it satisfies their sytitand semantic requirements.
An object of classC supports an interfackif the classC implementsl. Reasoning
control is ensured by substitutability at the level of ifdees:an object supporting an
interface | may be replaced by another object supporting &@ubinterface of Iin a
context depending oh although the latter object may be of another class. Susiolgs
is unrestricted in the sense that implementation claimscéasb invariants are not in
general inherited.

With distinct inheritance and subtyping hierarchies, €laheritance could allow
a subset of the attributes and methods of a class to be iatieHbwever, this would
require considerable work establishing invariants fotgaf the superclass that appear
desirable for inheritance, either anticipating futuredser while designing subclasses.
The encapsulation principléor class inheritance states that it should suffice to work
at the subclass level to ensure that the subclass is wediveehwhen inheriting from
a superclass: Code design as well as new proof obligatiomdatoccur in the sub-
class only. Situations that break this principle are calid@ritance anomalies [28, 32].
Reasoning considerations therefore suggest that albatids and methods of a super-
class are inherited, but method redefinition may violatesgmantic requirements of an
interface of the superclass.

2.1 Multiple Inheritance

The focus of this paper is the formalization of an operatigeaantics for code reuse
through class level multiple inheritance. Multiple inhiarice seems desirable because
it provides much better possibilities for sharing than Engheritance, allowing named
features (attributes and methods) from several classesitadgrated. The combination
of single inheritance and interfaces is sometimes propaseuh alternative to multiple
inheritance, but this approach has some difficulties. Ini@aar virtual binding does
not integrate directly with delegation, and the use of ggevaethods as well as program
variables from superclasses is problematic. Tempero atdi®show how the reusab-
ility of the Java Core API is adversely affected by the lackmfitiple inheritance [39].
Multiple inheritance is found in languages such as C++ [G8]DS [12], Eiffel [31],
Full Maude [8], POOL [2], and Self [7]. Although multiple ierhitance provides a flex-
ible way to describe class hierarchies, it is avoided or afiywed in a restricted ver-
sion (such as interfaces, abstract classes, or traits) iy faaguages, e.g., Java and C#.
Apart from semantic issues, two important arguments agaioiple inheritance are:

276

(2) the run-time system of languages with multiple inheritais more complex and less
efficient, and (2) inheriting from many classes increasegthssibility of programmer
mistakes. However, efficient run-time systems for langsagi¢éh multiple inheritance
have been developed [25, 38]. In order to address argumgrfo(thal methods may
contribute to a better understanding of existing multipleeritance mechanisms and
hopefully contribute to mechanisms with better supportriEasoning. The multiple
inheritance relation is transitive and defines a class ribyastructured as a directed
acyclic graph. A class in the class hierarchy extends theifea declared in its inher-
ited classes (or superclasses), possibly overloadinglefireng some of these features.
We shall say that a feature is definglovea clas<C if it is defined inC or in at least
one of the classes inherited By

2.2 Naming Policies for Conflict Resolution

From areasoning perspective, the difficulties regardinljipie inheritance occur when
the name spaces of several inherited classes conflict, Gtthegard to program vari-
ables and methods [24]. A name conflicvisrtical if a name occurs in a class and in
one of its ancestors, corresponding to overridden metholdudgions. A name conflict
is horizontalif the name occurs in distinct branches of the graph. Whiléiced name
conflicts are fairly well understood, different solutiores/k been proposed to deal with
horizontal name conflicts. One approach is to remove amtiéguiyexplicit resolution
This is achieved if a name which is inherited from severaksclasses is redefined in
the subclass or directed to a superclass definition througlifigation [38]. If a class is
multiply inherited, qualification by class path leads to aldtation of attributes while
qualification by class name leads to unification (virtuaksks in C++). This choice
leads to one or two copies of the attributes of cladsa Fig. 1b. Path qualification is
not always sufficient to distinguish two inherited instasmoéa class and may therefore
fail, as illustrated by Fig. 1c. Explicit resolution can@lse achieved by renaming at-
tributes and methods [2, 31], thus eliminating name cosflidthen there are no name
conflicts, the inheritance graph may leearizedand the need for explicit support for
multiple inheritance in the run-time system is avoided slikialso the case with mixin-
based inheritance [4], and with traits [35]. Mixins andtaire integrated in the linear
inheritance graph to extend and modify the resulting bedrasfithe superclass. How-
ever linearization has been criticized for changing thepichild relationship between
classes in the inheritance hierarchy [36].

Ambiguities may also be seen as a natural feature of muliileritance, occur-
ring when related methods in different superclass hierasdre given the same name.
From this point of view it seems less desirable to apply a ngdiscipline which forces
the programmer to modify names a posteriori, making thesalafinitions more diffi-
cult to understand. Taking this approach, ambiguities ddressed bymplicit resolu-
tion. Three approaches can be used to explain implicit resolati@ambiguous method
names. First, methods with the same name may be seen asyap@ibpriate. In this
case the method definitions may nondeterministically caenfor selection, as in Full
Maude [8] and the Join-calculus [15]. (Redefinition is ngported by Full Maude,
whereas renaming is required in the Join-calculus.) Segunthods of the same name
may be jointly selected, extending the binding strategy @fBBo multiple inheritance.

277

/\Aﬂ /\E\
\D \D/ \D/ \D/

Figure 1. Examples of class inheritance: (a) single inheritance a(lbpmmon ancestor in the
inheritance graph, (c) duplicate inheritance, and (d) iplelinheritance.

Third, ambiguities may be solved by fixing tbeder of the inherited classes; this way
the strategy for selecting method definitions will be unagnbus [7,12,22]. This seems
desirable as it leaves the programmer in control.

2.3 Virtual Binding

Virtual binding (or dynamic dispatch) is a powerful mectamiof object orientation,
originally introduced in [11] for single inheritance in Sitta. A method is virtually
bound if the body corresponding to a method invocation isctet! at run-time. Virtual
binding is applied when the actual class of an object is raticstlly known. Tradition-
ally, this happens when a method invoked from a class is wBn above the actual
class of the object. When objects are typed by interfacesymlasses may implement
the same interface. Consequently all external method aadlsirtually bound.

Combined with class inheritance, virtual binding allowsgmamming with the so-
called template method pattern [16]: a base class proviadéstecture and subclasses
provide the specialized (auxiliary) methods, while codeseeis supported for the ar-
chitecture. The mechanism can be illustrated by an objectassD which executes
a method defined in its supercladqcf. Fig. 1a) and this method makes a call to a
methodm. With virtual binding, the code selected for execution Wil associated to
the first matching signature fon above Di.e., the method ifB is selected. However it
is unsettled how to virtually bind method invocations in asd hierarchy with multiple
inheritance, if methods are defined in different classekérierarchy. In the example
of Fig. 1b, a strategy is needed to clearly express which ogetlefinition to select
among the candidates for.

Formal models of possible solutions to multiple inherintay contribute to better
understanding and use of multiple inheritance, and fatdliteasoning about code in-
heritance. A denotational account of multiple inheritahae been given [6], but virtual
binding is not considered as name conflicts are assumed nottwo.

An operational semantics in rewriting logic allows exetilgaexperimentation with
different strategies for virtual binding. For this purppse consider multiple inherit-
ance in the setting of the Creol language, which has a comfdetnalization in re-
writing logic. In previous work [22], an ordered solution svproposed in which the
binding strategy did not distinguish a virtual call from gstclassA in Fig. 1a) and
a standard call from the subclas3 i Fig. 1a). In this paper a novel version of the

278

ordered approach is considered in which the order may varydan calls, as the or-
dering is dynamically decided by the context of each calisTrew approach, called
pruned bindingavoids renaming while providing better support for theagrsulation
principle. Calls are always bound to specializations ofk&#nition found by static ana-
lysis, allowing reasoning reuse for virtual calls in thetisgt of multiple inheritance.

Consider the case wheeinherits two unrelated class&andC (Fig. 1d), both
with a methodm. Assume that & object calls a method i€ which in turn callsm
locally. With the ordered approach this call will bind to theof B rather than that of
C, assuming no redefinition afiin D. This binding is clearly undesirable since time
of B is not a redefinition of that of. The twom methods have no relationship since
they are from unrelated class hierarchies. The exampledh Sdemonstrates resulting
problems. These problems are avoided with the pruned kgrstmategy. Furthermore,
the strategy ensures the principle that when the actua ofean object is smaller, each
local call will be bound to a smaller class. This principléngiitive and is also useful
for reasoning control.

3 A Language for Asynchronously Communicating Objects

This section provides a basis for the technical discussiuoiwfollows. We consider a
small object-oriented language which is a subset of Créhl2], a high-level language
for distributed concurrent objects. We distinguish dagpetl by data types, and ob-
jects, typed by interfaces. The language allows both bfackind nonblocking method
calls, based on a uniform semantics. Attributes (instaacmbles) and method declar-
ations are organized in classes, which may have data andtgdgeameters. Objects
are concurrent and have their own processor which evall@atesprocesses. A pro-
cess consists of program code wittocessor release pointsgether with a local state,
representing remaining parts of method activations. RsEemay bactive reflecting
autonomous behavior initiated at creation time by tinemethod, oreactive i.e., in
response to method invocations. Due to processor reledsts phe evaluation of pro-
cesses may be interleaved. The values of an object’s progadables may depend on
the nondeterministic interleaving of processes. Howevergthod activation may have
local variables supplementing the object variables, inigaar the values of formal
parameters are stored locally. An object may contain seyeeading) activations of
the same method, possibly with different values for locailaldes.

Guardd in statementawait b explicitly declare potential processor release points.
When a guard which evaluates to false is encountered durimgpps evaluation, the
process isuspendednd the processor released. After processor release, abjedn
pending process may be selected for evaluation. For the @raraof this paper, it suf-
fices to consider guards as boolean expressions over progudables, but we intro-
duce reply guards in the operational semantics (cf. Seg). 6.

Statements can be composed sequentially or by conditisaathing. Lets; and
S, denote statement lists. Sequential composition may intredhner guardawait b
is a potential release point & ;await b; s;. Assignment to local and object variables
is expressed as := E for a disjoint list of program variables and an expression ligt,

279

Syntactic categories. Definitions.

s in Stm vin Var p ::= m|x.m| m@classnamgm < classname

t in Label ein Expr si=s|sS

min Mtd xin ObjExpr su=skip|(S) |V := E|v:= new classnam)

pin MtdCall ~ bin BoolExpr | p(E;v) |await p(E; V) |await b|if b then s; elses; fi

Figure 2. A subset of the Creol language for method definitions, wiphdsgl terms for each cat-
egory. Capitalized terms such mglenote lists, sets, or multisets of the given syntacticgmates.

of matching types. The reserved wadlf is used for self reference. In-parameters as
well as theself andcallerpseudo-variables are read-only variables.

All object interaction happens through method calls. Wesader here blocking
calls and nonblocking calls. (The full language provideserexpressiveness [20].) A
nonblocking method cal$ writtenawait x. m(E; v). The calling process emits the call
to an objectx and suspends itself while waiting for a reply. When the regfyves,
return values are assignediand evaluation continues.

A blocking method callimmediately blocking the processor while waiting for a
reply, is writtenx.m(g; v). Whenx evaluates tcself the call is said to be local. The
language does not support monitor reentrance (exceptierteaelf), mutual blocking
calls may therefore lead to deadlock. In order to evaluai® lolocking calls, the evalu-
ation of the call will precede the continuation of the acfivecess, thereby unblocking
the processor (self-reentrance).

Internal calls are not prefixed by an object identifier andadeatified syntactically,
otherwise the call is external. All calls are virtually baljrexcept when the method
name is explicitly qualified by a class narme@C. In our setting method calls can al-
ways be emitted, as a receiving object cannot block comnatinit.Method overtaking
is allowed: if methods offered by an object are invoked in ortker, the object may start
execution of the method activations in another order.

With nonblocking method calls, the object will not block Wehiaiting for replies.
This approach allows flexibility in the distributed settirsyispended processes or new
method calls may be evaluated while waiting. If the callejotnever replies, deadlock
is avoided as other activity in the object is possible. Hoevewhen the reply arrives, the
continuationof the process must compete with other pending and enabteggses.

4 Multiple Inheritance

A mechanism for multiple inheritance is now considered, ngtadl attributes and meth-
ods of a superclass are inherited by the subclass, and wifggectass methods may be
redefined. In the syntax, the keywdnterits is introduced followed by aimheritance
list; i.e., a list of class namé3(E) wherek provides the actual class parameters.

Let a class hierarchy be a directed acyclic graph of parameteclasses. Each class
consists of a list of inherited classes, a set of attribupesgram variables including
class parameters), and method definitions. The encapsulptovided by interfaces

280

suggests that external calls to an object of clasare virtually bound to the closest
method definition abov€. However, the object may internally invoke methods of its
superclasses. In the setting of multiple inheritance amdloading, methods defined in
a superclass may be accessed from the subclass by qualféeelees. Vertical name
conflicts for method names are resolved in a standard wayirthenatching definition
with respect to the types of the actual parameters is chobée ascending a branch of
the inheritance tree. Horizontal name conflicts will be hest dynamically depending
on the class of the object and the context of the call.

4.1 Qualified Names

Qualified names may be used to uniquely refer to an attributeathod in a class. For
this purpose, we adapt tlygia construct of Simula to the setting of multiple inheritance.
For an attributex or a methodn declared in a clasgS, we denote bx@C andm@C
the qualified names which provide static referencesandm. By extension, ifx orm

is not declared inC, but inherited from the superclasses@fthe qualified reference
m@C binds as an unqualified referenmgrom C.

Attribute names are not visible through an object’s extdmarfaces. Consequently
attribute names should not be merged if inheritance leadartte conflicts, and attrib-
utes of the same name should be allowed in different cladstee dnheritance hier-
archy [36]. In order to allow the reuse of attribute namesséhwill always be expanded
into qualified names. This is desirable in order to avoid tiore errors that may occur
if methods of superclasses assign to overloaded attribliesqualification convention
has the following consequence: unlike C++, there is no dafitin of attributes when
branches in the inheritance graph have a common superClassequently if multiple
copies of the superclass attributes are needed, one hdg tmréelegation techniques.

Instantiation of attributes.At object creation time, attributes are collected from the
object’s class and superclasses. An attribute in a @assdeclared byar x: T =g,
wherex is the name of the attributd, its type, ance its initial value. The expression
e may refer to the values of the class parameter variabjess well as to the values
of inherited attributes by means of qualified reference® iffitial state values of an
object of clas€ then depend on the actual parameter values boundThese may be
passed as parameter values to inherited classes in ordaive dalues for the inherited
attributes, which in turn may be used to instantiate thellpceclared attributes.

Accessing inherited attributes and methotfsC is a superclass @', we introduce the
syntaxawait m@C(E; v) for nonblocking, an@n@C(E; v) for blocking, internal calls to

a method above€ in the inheritance graph. These calls may be bound withoaviag

the exact class of theelf object, so they are callesfatic, in contrast to calls without @,
calledvirtual. We assume that attributes have unique names in the inhegigraph;
this may be enforced at compile time by extending each atgibamex with the name

of the class in which it is declared, which implies that atites are bound statically.
Consequently, a method declared in a cfassay only access attributes declared above
C. In a subclass, an attributeof a superclas€ is accessed by the qualified reference
x@C. This means that multiply inherited superclasses are dheatner than duplicated.

281

Figure 3. Binding calls tom, m@C, andm < C’ from classD

Duplication may be achieved by class renaming in an inhegédist. The language
syntax is summarized in Fig. 2.

4.2 Virtual Binding

Let the nominal subtype relatior be a reflexive partial ordering on types, including
interfaces. A data type may only be a subtype of a data typaarmterface only of an
interface. IfT < T’ then any value of may masquerade as a valueldf For product
typesRandR, R < R is the point-wise extension of the subtype relation; RandR
have the same lengthandT; < T/ for everyi (0 <i <) and typedl; andT; in position

i in RandR respectively. To explain the typing and binding of methoess extended
to function spaces — B, whereA andB are (possibly empty) product types:

A—B<A B =A<AAB' <B

expressing the relationship between actual and formalnpetexs, but not subtyping
over function spaces, which are not part of the functionaimge. The static analysis
of an internal calm(E; v) will assign unique types to the in and out parameter depend-
ing on the textual context, say that the parameters aredkxieclared ag : Tg and
v : Ty. The call istype correctf there is a method declaration: A — B in the clas<,
possibly inherited, such thag — Ty < A— B. The binding of an internal nonblocking
call await m(g; Vv) is handled as the corresponding blocking ca(E; v). An external
call to an object of interfackis type correct if it can be bound to a method declaration
in | in a similar way. The static analysis of a class will verifytfit implements the
methods declared in its interfaces.

Let a clas<C be belowa classC’ if C is C', or is a direct or indirect subclass of
C'. Similarly, a method declaration inside a cl&ss belowa classC’ if C is below
C'. We introduce the syntam < C’ for constrained method callsestricting the virtual
binding of m to methods belovC’. (Static typing requires the class enclosing the call
to be belowC’.) The pruned virtual binding of method calls is now explain€rhe
formalization is given in Sec. 6.4.) At run-time, a call to &ttmod of an objecd will
always be bound above the classof et m be a method declared in an interfdcand
let o be an instance of a cla€simplementing . There are two cases:

282

1. mis called externally, in which cage is not statically known. In this cas€, is
dynamically identified as the class @f

2. mis called internally fronC’, a superclass of the actual cl&®f o. In this case
static analysis will identify the call with a declaration wfaboveC’, say inC".
Consequently, we let the call be constraineddy and compilation replaces the
reference tan with a reference tan< C".

The dynamically decided context of a call may eliminate paftthe inheritance graph
above the actual class of the callee with respect to the inai a specific call. If a
method name is ambiguous within the dynamic constraint,agarae that any solution
is acceptable. For a natural and simple model of priority,dall will be bound to the
first matching method definition abo@; in a left-first depth-first order. (An arbitrary
order may be obtained by replacing the inheritance list byutiset.)

It is easy to see that run-time binding always succeeds imeatiytyped program.
When a methoth: Tg — Ty in an objecb of interfacel is externally called at run-time,
the actual clas€ of o is dynamically decided and the virtual binding mechanisith wi
bind to a declaratiom: A — B such thaffg — Ty < A— B, taking the first sucmwhen
traversing the inheritance graph abdveStatic analysis guarantees tlaimplements
I and consequently that at least one method declaration atioveC may be bound
to the call. An internal calm: Tg — Ty is made by an object of a subcladsof C
(from the static analysis) and the virtual binding mechamnigll bind to a declaration of
m: A’ — B’ such thaffg — Ty < A’ — B/, following the binding strategy constrained by
D. Because& is inherited byD, the virtual binding is guaranteed to succeed. However,
it is not guaranteed that the declaration ab@wehich was found by static analysis will
be selected. In order to ensure that a calinton D will choose the declaration above
C, the method may be qualified egC in D. For virtual calls from a supercla€s of
C, such qualification cannot be used. In order to ensure thiatuaily bound call from
a superclass will select a specialization of the statidaliynd declaration, the binding
will be constrained byZ’. Even if no specialization is found, the binding will sucdee
as the constraint does not remove the declaration founchltig sinalysis.

5 Example: Combining Authorization Policies

In a database containing sensitive information and diffeaeithorization policies, the
information returned for a request will depend on the cleegdevel of the agent mak-
ing the request. LeAny denote the interface of arbitrary objectgent the interface of
agents, andwuth an authorization interface with methogganix), revokeXx), auth(x),
and delayfor agentsx. The two classeSAuth and MAuth, both implementingAuth,
implement single and multiple authorization policies pexively. Since the attribute
grin SAuthis implemented as an object identifi&Auth only authorizes one agent at
a time whereadAuth authorizes multiple agents. The methgréin(x) returns when
X becomes authorized, and authorization is removerbbykgx). The methodauth(x)
suspends untit is authorized, andelayreturns once no agent is authorized.

283

classSAuthimplements Auth classMAuth implements Auth

begin with Any begin with Any
var gr: Agent= null var gr: Set[Agent] = 0
op grantfn x:Agent) == delay;gr := x op grant{n x:Agent) == gr:= gruU {x}
op revoke(n X:Agent) == op revoke(n X:Agent) == gr:=gr \ {X}

if gr=xthen gr:= nullfi op authfn x:Agent) == await (X € gr)

op auth{n x:Agent) == await (gr = x) op delay ==awalit (gr = 0)
op delay ==await (gr = null) end

end

Authorization levels. Low clearanegents may share access to unclassified data while
high clearanceagents have unique access to (classified) data. Proper issdgfned
by two interfaces, defining open and close operations atdathss levels:

interface High interface Low

begin with Agent begin with Agent
op openHput ok:Bool) op openL
op accessf k:Key; out y:Data) op access(k:Key; out y:Data)
op closeH op closeL

end end

When theopenHmethod returns, the calling agent would not know whethen higcess
was granted, unless a boolean out parameter is present.

Let a classDB provide the actual operations on the database. We assuree giv
the operationgaccesén k:Key, highBool; out y:Data), wherehigh defines the access
level, andclear(in x : Agent; out b : Bool) to give clearance to sensitive data for agent
X. Any agent may get low access rights, while only agents etbhy the database may
be granted exclusive high access. The clegsith will authorize low clearance, and
SAuthwill authorize high clearance&sAuth authorizes only one agent at a time.

classHAuth implementsHigh classLAuth implementsLow
inherits SAuth DB inherits MAuth, DB
begin with Agent begin with Agent
op openHpEut ok:Bool) == op openL == grant(caller)
await clear(caller;ok); op access(k:Key; out y:Data) ==
if ok then grant(calleryi auth(caller);
op accessf k:Key; out y:Data) == await access@B (k,false; y)
auth(caller); op closeL == revoke(caller)
await access@B (k,true; y) end
op closeH == revoke(caller)
end

The code given here uses nonblocking calls whenever theaepisssibility of local
deadlock. Thus, objects of the four classes above will betalrlespond to new requests
even when used improperly, for instance when agent acces# isitiated by open.
Notice that thecaller pseudo-variable is used to pass on agent identity in lodkl. ca
Thewith Agent clauses imply thagent is the type ofcaller, ensuring strong typing.

284

The database itself has no interface contaigiogesstherefore all database access
is through theHigh andLow interfaces. Notice also that objects of théuth andHAuth
classes may not be used through theh interface. This would have been harmful for
the authorization provided in the example. For instancealbte grant to a HAuth
object could then result in highccesswithout clearance of the calling agent! This
supports the approach not to inherit implementation clause

Combining authorization levelddigh and low authorization policies may be combined
in a subclas#iLAuth which implements both interfaces, inheritihguth andHAuth.

classHLAuth implementsHigh, Low
inherits LAuth, HAuth
begin with Agent
op accessh k:Key; out y:Data) == if caller=gr@sAuth
then access@Auth(k; y) elseaccess@Auth(k; y) fi
end

Notice that the same database is used for btigh andLow interaction. Although the
DB class is inherited twiceiILAuth gets only one copy (cf. Sect. 4.1).

The example demonstrates natural usage of classes anglmirtieritance. Nev-
ertheless, it reveals problems with the combination of itthiece andstatically ordered
virtual binding: Objects of the classég\uth and HAuth work well, in the sense that
agents opening access through the andHigh interfaces get the appropriate access.
However the addition of the common subclé#isAuth is detrimental, assuming a fixed
inheritance ordering: When used through iigh interface, this class would allomul-
tiple high accesto data! Calls to théligh operations oHLAuth will trigger calls to the
HAuth methods. From these methods the virtual internal cas4ot revoke andauth
will now bind to those of théMAuth class, if selected in a left-most depth-first traversal
of the inheritance tree of the actual cladgsAuth. Note that if the inheritance ordering
in HLAuth were reversed, similar problems occur with the binding®f interaction.

Theprunedbinding strategy proposed in this paper ensures that theavinternal
calls inside classebslAuth and LAuth will be bound in classeSAuth and MAuth,
respectively, regardless of the actual class of the catigugh, LAuth, or HLAuth)
and of the inheritance ordering HLAuth. In particular thegrant call inside HAuth
will be understood agrant< SAuth which may not bind t@rantof MAuth.

6 An Operational Semantics of Inheritance and Virtual Binding

The operational semantics is defined using rewriting log®].[A rewrite theory is

a 4-tuple®R = (Z,E,L,R), where the signaturk defines the function symbols of the
languageE defines equations between terrhsis a set of labels, an® is a set of
labeled rewrite rules. From a computational viewpoint,\arite rulet — t’ may be
interpreted as Bbcal transition ruleallowing an instance of the patterrio evolve into
the corresponding instance of the patt€rrEach rewrite rule describes how a part of
a configuration can evolve in one transition step. If rewrities may be applied to

285

non-overlapping subconfigurations, the transitions magdséormed in parallel. Con-
sequently, concurrency is implicit in rewriting logic (RLA number of concurrency
models have been successfully represented in RL [8, 29)ydimy Petri nets, CCS,
Actors, and Unity, as well as the ODP computational mod€]. [RB also offers its own
model of object orientation [8].

Informally, a state configuration in RL is a multiset of terofgyiven types. Types
are specified in (membership) equational logicE), the functional sublanguage of RL
which supports algebraic specification in the OBJ [17] stWen modeling compu-
tational systems, configurations may include the localesysitates. Different parts of
the system are modeled by terms of the different types deiimtat equational logic.

RL extends algebraic specification techniques with traorsitules: The dynamic
behavior of a system is captured by rewrite rules, supplémgthe equations which
define the term language. Assuming that all terms can be eeldiacnormal form, re-
write rules transform terms modulo the defining equationg o€onditional rewrite
rules are allowed, where the condition is formulated as guemtion of rewrites and
equations which must hold for the main rule to apply:

subconfiguratior— subconfigurationf condition

Rules in RL may be formulated at a high level of abstractidasely resembling a
compositional operational semantics. In fact, structop@rational semantics can be
uniformly mapped into RL specifications [30].

6.1 System Configurations

A method call will be reflected by a pair of messages, and objgtévity will be organ-
ized around anessage queughich contains incoming messages angr@cess queue
which contains suspended processes, i.e. remaining dartstbod activations. Mes-
sages have the general formessagé¢o destwheredestis a single object or class, or
a list of classes. A state configuration is a multiset conmigjrCreol objects, classes,
and messages. (In order to increase the parallelism in tldelnmoessage queues could
be external to object bodies as shown in [20, 22].) As usuRlinthe associative con-
structor for lists, as well as the associative and comnugaibnstructor for multisets,
are represented by whitespace.

In RL, objects are commonly represented by terms of the tgp€|as : v1,...,an:
Vn) Whereo is the object’s identifierC is its class, they’s are the names of the ob-
ject’s attributes, and the’s are the corresponding values [8]. We adopt this form of
presentation and define Creol objects and classes as RLi@bj@mitting RL types,
a Creol object is represented by an RL objéob| CI, Pr, PrQ Lvar, Att, Lab EvQ),
where Ob is the object identifierCl the class nameRrthe active process cod€rQ
a multiset of suspended processes with unspecified queedrygEvQ a multiset of
unprocessed messages, dndir and Att the local and object state, respectively. Let
T be a type partially ordered by, with least element 1, and leext: T — T be such
that Vx.x < nextx). Labis the method call identifier corresponding to labels in the
language, of type. Thus, the object identifieDb and the generated local label value
provide a globally unique identifier for each method call.

286

The classes of Creol are represented by RL objectsinh, Att, Mtds, Tok, where
Clis the class naménhis the inheritance listAtt a list of attributesMtds a multiset
of methods, andok is an arbitrary term of type. When an object needs a method, it
is bound to a definition in th&tds multiset of its class or of a superclass.

In RLs object model [8], classes are not represented eflplin the system config-
uration. This leads to ad hoc mechanisms to handle objeatiore which we avoid by
explicit class representation. The Creol constrnumt/C(E) creates a new object with
a unique object identifier, attributes as listed in the ctesameter list and idtt, and
places the code from theeenmethod inPr.

6.2 Concurrent Transitions

Concurrent change is achieved in the operational semaoyicspplying concurrent
rewrite steps to state configurations. There are four diffekinds of rewrite rules:

— Rules that execute code from the active procEesevery program statement there
is at least one rule. For example, the assignment rule faoithgramv := E binds
the values of the expression Iisto the listv of local and object variables.

— Rules for suspension of the active procé¥§$ien an active process guard evaluates
to false, the process and its local variables are suspeledeihg Prempty.

— Rules that activate suspended proces¥egben Pris empty, suspended processes
may be activated. When this happens, the local state isaeqhla

— Transport rulesThese rules move messages into the message queues, répgesen
network flow.

When auxiliary functions are needed in the semantics, theseefined in equational
logic, and are evaluated in between the state transitiddjsTRe rules related to method
calls, virtual binding, and object creation are now consden detail. In the presenta-
tion irrelevant attributes are ignored in the style of Fukhiulle [8].

6.3 Method Calls

Blocking and nonblocking calls are given a uniform semantin the operational se-
mantics, objects communicate by sending messages. Twagesencode a method
call. We here assume that the types of the actual in- andanatapeters of the call have
been added to the method invocation as an additional argu&igat compile time. If
an objecb; calls a methodn of an objecy, with actual typeSigand actual parameters
In, and the execution ofi(Sig, In) results in the return valueut the call is reflected
by two messagemvodm, Sig, (n 01 In)) to o andcompgn, Out) to 01, which represent
the invocation and completion of the call, respectivelytHa asynchronous setting, in-
vocation messages must include the caller’s identity, soptetions can be transmitted
to the correct destination. Objects may have several pgrddills to another object, so
the completion message includes a locally unique labekralgenerated by the caller.

A blocking call p(Sig, In; V), wherev is a list of variables angh one of the forms
x.m, m@C, or m < C, is translated into ansynchronous call p(Sig, In), immediately
followed by a blockingreply statementn?(v), wheren is the label value uniquely
identifying the call:

287

(0: Ob| Pr: p(Sig,In;Vv);s,Lab: n) = (0: Ob| Pr:!p(Sig,In);n?(v);s,Lab: n)
A nonblocking call is understood as an asynchronous cédhad by areply guard

(0: Ob| Pr: await p(Sig,In;V);s,Lab: n)
= (0: Ob| Pr:!p(Sig, In);await n?;n?(v); s, Lab: n)

A reply guardawait n? evaluates to true whenamp message with the label value
n has arrived, in which case the reply stateme?{/) will assign the return values to
v, otherwise the active process is suspended (see below}eGoently, it suffices to
consider asynchronous invocations, and blocking and gadlareplies to capture both
blocking and nonblocking method calls.

When an object calls an external method, a message is platieel configuration:

(0:Ob| Pr:'x.m(Sig, In); s, Lvar: L,Att : A,Lab: n)
—
(0:0b| Pr:s,Lvar: L,Att: A,Lab: nextn))
invodm, Sig,(n oevalln,(A;L)))) to evalx, (A;L))

wherex is an object expressiom a method name, arglalis a function which evalu-
ates an expression (list) in the context of a state. Whevaluates to, the object creates
aninvoc message to itself. Similarly, an internal call gives ris¢ht® same invocation
message:

(0:Ob| Pr:1p(Sig,In);s,Lvar: L,Att: A, Lab: n)
(0:0b| Pr:s,Lvar: L,Att: A,Lab: nextn))
invodp, Sig,(n oevalln,(A;L)))) to o

wherep is of the formm@C or m < C. The constrainC will be used in the virtual
binding as described below.

Transport rules take charge of messages, which eventusillg at the destination’s
message queue:

(invodE) to 0) (0: Ob| EvQ: Q) — (0: Ob| EvQ: Q invod(E))
(comdEe) to 0) (0: Ob| EvQ: Q) — (0: Ob| EvQ: Q com{dE))

These rules model loose distribution of objects. Messagetaking is captured by the
nondeterminism inherent in RL: messages sent by an objeamdther object in one
order may arrive in any order.

The caller may wait for a completion in a reply statement tocéyonize on the
completion of the call, or in a reply guard. The reply statetm®(V) blocks until the
appropriate reply message has arrived in the message dquesdlocking is captured
by a rule requiring matching label values in the active statet and the event queue:

(0:0b| Pr: (n?(v);s), EvQ: Q comgn, Oub)
— (0:0b| Pr: (v :=0uts),EvQ: Q)

Inthe model EvQis a multiset; thus the rule will match any occurrenceafn, Out)
in the queue. Remark that blocking reply statements agsaloidth calls to self require
special treatment in order to avoid deadlock [20].

288

6.4 Virtual and Static Binding of Method Calls

In order to allow concurrent and dynamic execution, theifilieritance graph will not
be statically given. Rather, the binding mechanism dynallyiénspects the current
class hierarchy as present in the configuration. Our apprmadgrtual binding is to use
abind message to be sent from a class to its superclasses, rgsnliboundmessage
returned to the object generating thimd message. This way, the inheritance graph is
explored dynamically and as far as necessary when needesh Wb invocation of a
methodmiis found in the message queue of an obfea messagéind o, m, In) to C
can be generated by dynamically retrieving the class the object. HereSig is the
method signature as provided by the caller &ni$ the list of actual in-parameters:

(0: Ob|ClI : C,EvQ: invodm, Sig, In) Q)
— (0:Ob|CI : C,EvQ: Q) (bindm, Sig,In,0) to C)

The same applies to internal static cati@C. Static method calls are generated without
inspecting theactualclass of the callee, thus surpassing local definitions:

(0: Ob| EvQ: invod m@C, Sig, In) Q) — (0: Ob| EvQ: Q) (bind'm, Sig, In,0) to C)

If a suitablemis defined locally irC, a process with the method code and local state is
returned in aboundmessage. Otherwise, tlénd message is retransmitted to the su-
perclasses d in a left-first, depth-first order. In order to easily trawetle inheritance
graph, an inheritance list is used as the destination obig& message:

(bindim, Sig, In,0) to C 1) (C: Cl|Inh: V', Mtds: m)
— if matchm, Sig,M) then boundgetfm,m, In)) to o
elsebindm, Sig, In,0) to (1" 1) fi (C: Cl| Inh: V', Mtds: m)

The auxiliary predicatenatcHm, Sig,M) evaluates to true if is declared inv with

a signatureSig such thatSig < Sig, and the functiorget returns a process with the
method’s code and local state from the method multisef the class. (Static checking
ensures that virtual binding will succeed.) Values of thaakin-parameterén, the
caller o, and the label valua are stored locally. The processresulting from the
binding is loaded into the internal process queue:

(boundw) to 0) (0: Ob| PrQ: w) — (0: Ob| PrQ: w w)

Note that the use of rewrite rules rather than equations esiistributed and concur-
rent processing of method lookup.

Internal virtual binding. The binding of an internal virtual cath < C’ constrained by
C' is slightly more complex. When a match in a cl&sis found, the inheritance graph
of C is checked to ensure th@tis belowC’, otherwise the binding must resume:

(bindm< C', Sig,In,0) to C 1) (C: Cl| Inh: 1, Mtds: M)
— if matcKm, Sig,m) then (find(C',C) to C) (stopbingm < C', Sig, In,0) to C 1)
elsebindm, Sig, In,o0) to (1 1) fi (C: Cl|Inh:\',Mtds: m)
(foundb,C’) to C) (stopbindm, Sig,In,0) to C 1) (C:Cl|Inh: V', Mtds: m)
— if bthen boundgefm, ™, In)) to o elsebindm, Sig, In,0) to 1 fi
(C:Cl|Inh:V ,Mtds: m)

289

wherestopbindis an additional message used to suspend binding while oiethat

C is belowC'. This is done by two auxiliary messages: The mesdagC,0) to |
represents that is askingl if Cis found inl or further up in the hierarchy, whereas
foundb,C) to o gives the answer to, where the booleah is true if the request was
successful. This can be formalized by the rewrite rulesqfitng class parameter lists)

find(C,0) to ¢ — foundfalseC) to o

find(C,0)to1 C1" — foundtrueC) to o

(find(C,0) to C' 1) (C':Cl|Inh:1"y — (find(C,0)to11’) (C':Cl|Inh:1")if (C#C')
This search corresponds to breadth-first, left-first treafenf the inheritance graph.

6.5 Guarded Statements

Guards represent potential processor release pointsd&uzay be boolean or reply
guards. When a guard is encountered, the execution costifitne guard is enabled:

(0: Ob| Pr: awaitg; s, Lvar: L,Att : A,EvQ: Q)
—

(0: Ob| Pr:s,Lvar: L,Att: A,EvQ: Q) if enabledg, (A,L),Q)

Enabledness is defined by induction over the constructiguafds by the predicate
enabledn?,0,Q) = ninQ enabledb,D, Q) = eval(b,D)

whereD denotes a state, and the functisnchecks whether a completion message
corresponding to the given label value is in the messageeygeEnabledness is ex-
tended to statement lists, considering the head statemeatconsidering unguarded
statements as enabled. When a non-enabled guard is en@mljnikee active process is
suspendedn the process queue:

(0: Ob| Pr:s,PrQ: w,Lvar: L, Att: A,EvQ: Q)
—

(0: Ob| Pr:&,PrQ: (w (s, L)),Lvar: €, Att: A,EvQ: Q) if not enable(s, (A;L),Q)

where(s, L) denotes the process with statemesisd local state. If there is no active
process, a suspended process carebetivatedf it is enabled:

(0: Ob| Pr:&,PrQ: (s,L) w,Lvar: L', Att: A,EVQ: Q)
—

(0: Ob| Pr:s,PrQ: w,Lvar: L,Att: A,EvQ: Q) if enableds,(A,L),Q)

This rule allows any enabled process to continue becBoQés a multiset.

6.6 Object Creation and Attribute Instantiation

Object creation results in a new object with a unique ide:tifihe new object makes an
initial blocking call to itsrunmethod (if present in the class), thereby initiating active
object behavior and leaving the programmer in control ofrdied the initial release

290

point. New object identifiers are created by concatenatikgrisn from the unbounded
set Tok to the class name. The identifier is returned to the objecthvhiitiated the
object creation.

(0:0b| Pr:v:=newC(In);s,Lvar: L,Att: A) (C:CI|Att: A’, Tok: n)
(0:0b| Pr:v:=newids, Lvar: L,Att: A) (C:Cl| Att: A, Tok: nextn))
(newid: Ob| Cl: C,Pr: run PrQ:g,Lvar: €, Att: €,Lab: 1, EvQ: €)
inherit newid €) to C(eval(in,(A,L)))

Here, newid denotes the new identifier. Before the new object can beaetly its
initial state must be created. This is done by collectingtatte lists, which consist of
program variables bound to initial expressions, from trassés inherited bg. The
initial expressions must be reduced to values and bouncktpribgram variables in the
state. Class parameters and inherited attributes providechanism to pass values to
the initial expressions of the inheritance list in a cladge Variables bound by the class
parameters are stored first in the attribute list of a clasisériextual order.

An inherit message, which sends an object identifier and a substitidiarclass
inheritance list, causes the inheritance tree to be tradeirs a right-first depth-first
order, while dynamically accumulating all inherited dttries and their initializing ex-
pressions, passing on appropriate class parametersed istéie inheritance lists. The
traversal results in a list of attributes with initializiegpressions, which are evaluated
by evalSfrom left to right and delivered to the new object. The atitélist is ordered
such that the attributes of a superclass precede those bttass, for all classes above
the class of the object. Consequently, the type system caragtee that all variables
occurring in an initial expression of a program variableave been instantiated before
Vv is instantiated.

inherit0,1A) to nil = inheritedevalS (self — 0) 1A),€) to 0

inherifo,1A) to (1 C(In)) (C:Cl|Inh: V' Att:IA")
= inherifo, (passIA’,In) 1A)) to (11") (C:Cl|Inh:V Att:1A")

The auxiliary functiorpasgpasses class parameters, given as expressions, to antattrib
list andevalS1A,A) evaluates attributes im from left to right, given a state.

pasgIA.€) = IA
pasg((v—e)IAa),€ E') = (v— €) pasgIA,E)

eval§e,A) =¢
eval§(vi— e) IA,A) = (vi— eval(e,A)) evalSIA, (vi— evalle A)) A)

The resulting state is consumed by the new object by the equat
(inheriteda) to 0) (0:Ob| Att: €) = (0: Ob| Att: A)

Notice again that the use of equations enables a new objbett¢ceated and initialized
in a single rewriting step.

In the presence of multiple inheritance, a cl&may inherit a superclass several
times. The equation

291

A—eA (vi—€)=A (viee) A

on attribute lists ensures that an attribute is only storegoThus multi-inheritance of
the same class is the same as inheriting the class oncengekpileftmost instantiation.
Duplicate classes may be achieved by class renaming iniiahee lists.

7 Related Work

Formal models clarify the intricacies of object orientatend may thus contribute to
better programming languages in the future, making prograasier to understand,
maintain, and reason about. Work on object calculi such es-tfalculus [1] capture
object-oriented features such as self-reference, enlajomsy and method calls. Con-
current object calculi [13,18] extend these mechanismautitmreaded and distributed
systems, but the complexities of class inheritance areddresses in [1,13,18]. A con-
current object calculus with single inheritance is preséiy Laneve [26]. Methods of
superclasses are accessible and virtual binding is addrekse to a careful renam-
ing discipline. A denotational semantics for single inteerce with similar features is
studied by Cook and Palsberg [9]. Multiple inheritance isaddressed in these works.

Formalizations of multiple inheritance in the literatunes aisually based on the
objects-as-recordgaradigm. This approach focuses on subtyping issues detatib-
classing, but issues related to method binding are notyeeajtured. Even access to
methods of superclasses is not addressed in Cardelli'satémmal semantics of mul-
tiple inheritance [6]. Rossi, Friedman, and Wand [34] psgpa formal definition of
multiple inheritance based osubobjectsa run-time data structure used for virtual
pointer tables [25, 38]. This formalism focuses on compiteetissues and does not
clarify multiple inheritance at the abstraction level o forogramming language.

Multiple inheritance is supported in languages such as G8%, CLOS [12], Eif-
fel [31], POOL [2], and Self [7]. As discussed in Sect. 2.lribontal name conflicts in
C++, POOL, and Eiffel are removed by explicit resolutiorteafvhich the inheritance
graph may be linearized. Multiple dispatch, or multi-meth@l 2], gives a more power-
ful binding mechanism, but does not handle the problemsiderexdd here, since they
appear even for methods without any parameters. Also réagabout multi-methods
is difficult in case of redefinition.

A natural semantics for virtual binding in Eiffel is propasi [3]. This work is
similar in spirit to ours and models the binding mechanisnthat abstraction level
of the program, capturing Eiffel's renaming mechanism. iktikased inheritance [4]
and traits [35] also depend upon linearization to be mergecectly into the single
inheritance chain. Linearization changes the parentiakiationship between classes
in the inheritance hierarchy [36]. Consequently undeditam e.g., method binding
quickly becomes difficult.

Full Maude [8] and the Join-calculus [15] model multiple émitance by disjoint
union of methods. Name ambiguity lets method definitions et for selection. The
definition selected when an ambiguously named method isd;atiay be nondetermin-
istically chosen. Alternatively, programmer control majitmproved if inherited classes
are ordered [7,12], resulting in a deterministic bindinggtgy. However, the ordering

292

of superclasses may result in surprising but “correct” bahvaThe example of Sect. 5
displays such surprising behavior regardless of how theritdd classes are ordered.

The dynamically typed prototype-based language Self [@ppses an elegapti-
oritized binding strategio solve this problem, although a formal semantics is ncigiv
The strategy is based on combining ordered and unorderedipfauhheritance. Each
superclass is annotated with a priority, and many supeetasmay have the same pri-
ority. A name is only ambiguous if it occurs in two superctswith the same priority,
in which case a class related to the caller class is prefekedever, explicit class
priorities may have surprising effects in large class hghigs: names may become
ambiguous through inheritance. If neither class is rel&tetie caller the binding does
not succeed, resulting in a method-not-understood error.

The pruned binding strategyproposed in this paper solves these issues without
the need for manually declaring (equal) class prioritied without the possibility of
method-not-understood errors: Calls are only bound tanaed method redefinitions.
The new binding strategy seems particularly useful duryisgesn maintenance to avoid
introducing unintentional errors in evolving class hietaes, as targeted by the Creol
language [23]. In particular, we have given an operatioealantics based on dynamic
and distributed traversal of the available classes, ratian through virtual pointer
tables. Our approach may therefore be combined with dyneomistructs for changing
the class inheritance structure, such as adding a €lasel enriching an existing class
with C as a new superclass, which could be useful in open reconfilpusgstems.

8 Conclusion

The treatment of ambiguous naming in object-oriented laggs with multiple inher-
itance is unsettled. Disallowing naming ambiguities whelneriting multiple super-
classes imposes undesirable restrictions with regard.d¢o, grogramming flexibility
and code maintenance. Ordering inherited classes solvgigaities by fixing the bind-
ing strategy above a given class. However, virtual bindimmlined with a fixed order
may lead to surprising but “correct” effects. This paper pagosed the@runed bind-
ing strategyto ensure that overriding is intended. This strategy dyiallyi restricts
the ordered inheritance graph depending on the contexeafah, using the concept of
constrained method cali(< C). This construct is also useful for fine grained program-
mer control of virtual binding in the case of multiple inttarice. The pruned binding
strategy and constrained method calls remove unintenfiect®bf ordered inheritance
while ensuring that binding will always succeed. The bigditrategy is combined with
intentional redirection through qualified references aittd vedefinition in the subclass.
In this paper, an operational semantics for the proposetirmirstrategy has been given
in rewriting logic. Although the formalization is given ihe setting of Creol, the mech-
anisms presented here could easily be lifted to anothéngett

Acknowledgment. The authors would like to thank Stein Krogdahl for intenegtilis-
cussions on multiple inheritance and virtual binding. Tbemments of the FMCO an-
onymous referees have improved the presentation.

293

References

N =

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. M. Abadi and L. CardelliA Theory of ObjectsSpringer, New York, NY, 1996.

P. America and F. van der Linden. A parallel object-oeeranguage with inheritance and
subtyping. In N. Meyrowitz, editorProc. of the Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSh#ges 161-168. ACM Press, Oct. 1990.

. |. Attali, D. Caromel, and S. O. Ehmety. A natural semanfar Eiffel dynamic binding.

ACM Transactions on Programming Languages and Syste&{6):711—-729, 1996.

. G. Bracha and W. Cook. Mixin-based inheritance. In N. Meytz, editor,Proc. of the

Conf. on Object-Oriented Programming: Systems, LanguagesApplications / Eur. Conf.
on Object-Oriented Programmingages 303-311. ACM Press 1990.

. K. B. Bruce, A. Schuett, R. van Gent, and A. Fiech. PolyTOALtype-safe polymorphic

object-oriented language ACM Transactions on Programming Languages and Systems
25(2):225-290, 2003.

. L. Cardelli. A semantics of multiple inheritanceinformation and Computatign76(2-

3):138-164, 1988.

. C. Chambers, D. Ungar, B.-W. Chang, and U. Hélzle. Parmshared parts of objects:

Inheritance and encapsulation in SElLFsp and Symb. Computatip#(3):207—222, 1991.

. M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,Meseguer, and J. F. Quesada.

Maude: Specification and programming in rewriting logitheoretical Computer Science
285:187-243, Aug. 2002.

. W. Cook and J. Palsberg. A denotational semantics of italmee and its correctness$n-

formation and Computatiqri14(2):329-350, Nov. 1994.

W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance i$ subtyping. In17th Symp. on
Principles of Programming Languages (POPL'9pages 125-135. ACM Press, Jan. 1990.
0.-J. Dahl and K. Nygaard. Class and subclass declasatio J. Buxton, editoSimulation
Programming Languagepages 158-174. North-Holland, 1968. Reprinted in M. Brog a
E. Denert, edsSoftware Pioneers — Contributions to Software Enginee&pginger, 2002.
L. G. DeMichiel and R. P. Gabriel. The common lisp objegdtem: An overview. In
J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman, edst&ur. Conf. on Object-Oriented
Programming (ECOOP’87)LNCS 276, pages 151-170. Springer, 1987.

P. Di Blasio and K. Fischer. A calculus for concurrentegts. In U. Montanari and V. Sas-
sone, editorsyth Intl. Conf. on Concurrency Theory (CONCUR'9GNCS 1119, pages
655-670. Springer, Aug. 1996.

C. Fischer and H. Wehrheim. Behavioural subtyping iiatfor object-oriented formal-
isms. In T. Rus, editoth Intl. Conf. on Algebraic Methodology and Software Tetbay
(AMAST 2000)LNCS 1816, pages 469-483. Springer, 2000.

C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inhezéan the join calculusJournal

of Logic and Algebraic Programminé7(1-2):23—69, 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns: Elements of Reusable
Object-Oriented SoftwareAddison-Wesley, Reading, Mass., 1995.

J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, affel Jouannaud. Introducing OBJ.
In J. A. Goguen and G. Malcolm, editoriSpftware Engineering with OBJ: Algebraic Spe-
cification in Action pages 3-167. Kluwer, 2000.

A. D. Gordon and P. D. Hankin. A concurrent object calsulReduction and typing.
In U. Nestmann and B. C. Pierce, editorigh-Level Concurrent Languages (HLCL’98)
volume 16(3) ofElectronic Notes in Theoretical Computer Scierksevier, 1998.

E. B. Johnsen and O. Owe. A compositional formalism fgeatbviewpoints. In B. Jacobs
and A. Rensink, editorRroc. 5th Intl. Conf. on Formal Methods for Open Object-Bhse
Distributed Systems (FMOODS’'Q3)ages 45-60. Kluwer, Mar. 2002.

294

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

E. B. Johnsen and O. Owe. An asynchronous communicatamtelnfor distributed con-
current objects. IrProc. 2nd Intl. Conf. on Software Engineering and Formal hets
(SEFM’'04) pages 188-197. IEEE Press, Sept. 2004.

E. B. Johnsen and O. Owe. Object-oriented specificatidnogen distributed systems. In
0. Owe, S. Krogdahl, and T. Lyche, editopm Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan DabhNCS 2635, pages 137-164. Springer, 2004.

E. B. Johnsen and O. Owe. Inheritance in the presence/oft@®nous method calls. In
Proc. 38th Hawaii Intl. Conf. on System Sciences (HICSSIEBE Press, Jan. 2005.

E. B. Johnsen, O. Owe, and I. Simplot-Ryl. A dynamic clamsstruct for asynchronous
concurrent objects. IfProc. 7th Intl. Conf. on Formal Methods for Open Object-Bhse
Distributed Systems (FMOODS’Q3)NCS 3535, pages 15-30. Springer, June 2005.

J. L. Knudsen. Name collision in multiple classificatiierarchies. In S. Gjessing and
K. Nygaard, editorsiur. Conf. on Object-Oriented Programming (ECOOP'88)CS 322,
pages 93-109. Springer, 1988.

S. Krogdahl. Multiple inheritance in Simula-like larages.BIT, 25(2):318-326, 1985.

C. Laneve. Inheritance in concurrent objects. In H. Bawrand J. Derrick, editor§prmal
methods for distributed processing — a survey of objeariad approachepages 326—353.
Cambridge University Press, 2001.

B. H. Liskov and J. M. Wing. A behavioral notion of subtygi ACM Transactions on
Programming Languages and Systef(6):1811-1841, Nov. 1994.

S. Matsuoka and A. Yonezawa. Analysis of inheritancevaiyp in object-oriented concur-
rent programming languages. In G. Agha, P. Wegner, and Aexana, editorsResearch
Directions in Concurrent Object-Oriented Programmijrmgages 107-150. The MIT Press,
Cambridge, Mass., 1993.

J. Meseguer. Conditional rewriting logic as a unified elaaf concurrency. Theoretical
Computer Scien¢®6:73-155, 1992.

J. Meseguer and G. Rosu. Rewriting logic semantics: Faaguage specifications to formal
analysis tools. In D. A. Basin and M. Rusinowitch, editd?syc. of the 2nd Intl. Joint Conf.
on Automated Reasoning (IJCAR 2004)CS 3097, pages 1-44. Springer, 2004.

B. Meyer.Object-Oriented Software ConstructioRrentice Hall, NJ., 1997.

G. Milicia and V. Sassone. The inheritance anomaly: Eary after. IrProc. of the Symp.
on Applied Computingpages 1267-1274. ACM Press, 2004.

E. Najm and J.-B. Stefani. A formal semantics for the Obfgutational modelComputer
Networks and ISDN Systen®2y:1305-1329, 1995.

J. G. Rossie Jr., D. P. Friedman, and M. Wand. Modelinglsjebt-based inheritance. In
P. Cointe, editor,10th Eur. Conf. on Object-Oriented Programming (ECOOP,96)ICS
1098, pages 248-274. Springer, July 1996.

N. Scharli, S. Ducasse, O. Nierstrasz, and A. P. BlaclaitSirComposable units of be-
haviour. In L. Cardelli, editorProc. 17th Eur. Conf. on Object-Oriented Programming
(ECOOP 2003)LNCS 2743, pages 248-274. Springer, 2003.

A. Snyder. Inheritance and the development of encajeslitftware systems. In B. Shriver
and P. Wegner, editorResearch Directions in Object-Oriented Programmipgges 165—
188. The MIT Press, 1987.

N. Soundarajan and S. Fridella. Inheritance: From cedse to reasoning reuse. In
P. Devanbu and J. Poulin, editoRxoc. Fifth Intl. Conf. on Software Reuse (ICSRigges
206-215. IEEE Press, 1998.

B. Stroustrup. Multiple inheritance for C+€omputing System2(4):367-395, Dec. 1989.
E. Tempero and R. Biddle. Simulating multiple inheritain Java.The Journal of Systems
and Software55(1):87—-100, Nov. 2000.

295

