
A Dynamic Binding Strategy for Multiple Inheritance
and Asynchronously Communicating Objects

Einar Broch Johnsen and Olaf Owe

Department of Informatics, University of Oslo, Norway
{einarj,olaf}@ifi.uio.no

Abstract This paper considers an integration of asynchronous communication,
virtual binding, and multiple inheritance. Object orientation is the leading para-
digm for concurrent and distributed systems, but the tightly synchronized RPC
communication model seems unsatisfactory in the distributed setting. Asynchron-
ous messages are better suited, but lack the structure and discipline of tradi-
tional object-oriented methods. The integration of messages in the object-oriented
paradigm is unsettled, especially with respect to inheritance and redefinition.
Asynchronous method calls have been proposed in the Creol language, reducing
the cost of waiting for replies in the distributed environment while avoiding low-
level synchronization constructs such as explicit signaling. A lack of reply to a
method call need not lead to deadlock in the calling object. Creol has an opera-
tional semantics defined in rewriting logic. This paper considers a formal opera-
tional model of multiple inheritance, virtual binding, andasynchronous commu-
nication between concurrent objects, extending the semantics of Creol.

1 Introduction

Object orientation is the leading paradigm for concurrent and distributed systems. The
importance of such systems is increasing in society, driving the need for formal models
and reasoning support for object-oriented distributed systems. With the current domin-
ation of languages such as Java and C++, one may think that there is only one way to
understand object-oriented languages. In the setting of distributed systems, these lan-
guages may be criticized for their approach to concurrency as well as to communica-
tion. An alternative approach is taken in the Creol language: concurrent objects typed by
interfaces which communicate by means of asynchronous method calls. This commu-
nication model integrates asynchronous message passing with the high-level structuring
mechanism of method definition and invocation [20].

In this paper we discuss multiple inheritance in the settingof open distributed sys-
tems and consider the combination of multiple inheritance and virtual (or late) binding.
Multiple inheritance provides a flexible way to combine class hierarchies, but is gener-
ally considered error-prone. Multiple inheritance is often explained in terms of run-time
data structures such as virtual pointer tables [38], which are complex and hard to under-
stand. High-level formal treatments are scarce (e.g., [3, 6, 15, 34]) but needed to clarify
intricacies, thus facilitating design and correctness reasoning for programs using mul-
tiple inheritance. In this paper, an operational semanticscapturing multiple inheritance
and virtual binding of methods for Creol is defined, extending work reported in [22].

In: F.S. de Boer, M. Bonsangue, S. Graf, W.-P. de Roever (Eds.):
Proc. 3rd. Intl. Symp. on Formal Methods for Components and Objects (FMCO’04),
p. 274–295, LNCS 3657, Springer-Verlag, Nov. 2005.

In particular, common restrictions on the name space of methods to avoid name
conflicts either severely limit the use of class inheritanceor become impractical in large
class hierarchies and break the encapsulation principle for class inheritance. In order to
maintain local reasoning control without abandoning common features of virtual bind-
ing such as method overloading and overriding, virtual binding of method calls must be
handled carefully. For this purpose, a dynamicpruned binding strategyis introduced in
this paper and formalized with an operational semantics given in rewriting logic. Re-
writing logic [29] is chosen due to its high level of abstraction with inherent support for
distribution, concurrency, and asynchronous communication, as well as its simulation
and model checking facilities through the Maude tool [8, 30]. This allows us to focus
the formalization on issues related to inheritance and virtual binding. The strategy is
integrated in the Creol interpreter in Maude. An example demonstrates that a form of
binding anomaly is avoided with this strategy.

Paper overview.Sect. 2 provides a background discussion on multiple inheritance.
Sect. 3 introduces the Creol language. Sect. 4 extends Creolwith mechanisms for mul-
tiple inheritance and pruned virtual binding, Sect. 5 illustrates the mechanisms, and
Sect. 6 defines its operational semantics. Sect. 7 considersrelated work and Sect. 8
concludes the paper.

2 Inheritance: Reuse of Behavior and Reuse of Code

Inheritance is a powerful feature of object orientation, but its exact role as a structur-
ing mechanism for programs varies between different object-oriented languages. With
single inheritance, a class is derived from one direct ancestor class, while withmul-
tiple inheritance there may be several direct ancestors. Inheritance may be understood
as a mechanism for sharing and specialization of behavior aswell as code. Formal ap-
proaches to inheritance tend to favor the first interpretation and understand inheritance
in terms of behavioral reuse, obeying thesubstitutabilityprinciple: As a subclass is a
specialization of a superclass, an object of the subclass may masquerade as an object of
the superclass. This interpretation of inheritance has ledto an active field of research on
behavioral subtyping [2, 14, 27], identifying conditions for safe substitutability. Atype
describes a collection of objects which share the same externally observable behavior.
Subtyping provides a powerful structuring mechanism for defining, specializing, and
understanding the external behavior of objects.

A classdescribes a collection of objects which share the same internal structure; i.e.,
attributes and method definitions. Code inheritance provides an equally powerful mech-
anism for defining, specializing, and understanding the imperative structure of classes
through code reuse and modification. Class extension and method redefinition are con-
venient both for development and understanding of code. Calling superclass methods in
a subclass method enablesreuse in redefined methods, making the relationship between
the method versions explicit. Thus, this facility is clearly superior to cut-and-paste pro-
gramming with regard to the ease with which existing code maybe inspected and under-
stood and it is also clearly superior to inheritance mechanisms which do not distinguish
between locally defined and inherited definitions. A denotational semantics for code
sharing and reuse based on single inheritance is given in [9].

275

Although many languages identify the subclass and subtype relations, in particular
for parameter passing, several authors argue that inheritance relations for code and for
behavior should be distinct [2, 5, 10, 37]. From the pragmatic point of view, combin-
ing these relations leads to severe restrictions on code reuse which seem unattractive
to programmers. From a reasoning perspective, the separation of these relations allows
greater expressiveness while providing type safety. In order to solve the conflict between
unrestricted code reuse in subclasses, and behavioral subtyping and incremental reason-
ing control [27, 37], we use behavioral interfaces [19, 21] to type object variables (i.e.,
references) and external (remote) calls, and allow multiple inheritance for both inter-
faces and classes. Interface inheritance is restricted to aform of behavioral subtyping,
whereas class inheritance may be used freely for code reuse.A class may implement
several interfaces, provided that it satisfies their syntactic and semantic requirements.
An object of classC supports an interfaceI if the classC implementsI . Reasoning
control is ensured by substitutability at the level of interfaces:an object supporting an
interface I may be replaced by another object supporting I ora subinterface of Iin a
context depending onI , although the latter object may be of another class. Subclassing
is unrestricted in the sense that implementation claims andclass invariants are not in
general inherited.

With distinct inheritance and subtyping hierarchies, class inheritance could allow
a subset of the attributes and methods of a class to be inherited. However, this would
require considerable work establishing invariants for parts of the superclass that appear
desirable for inheritance, either anticipating future needs or while designing subclasses.
The encapsulation principlefor class inheritance states that it should suffice to work
at the subclass level to ensure that the subclass is well-behaved when inheriting from
a superclass: Code design as well as new proof obligations should occur in the sub-
class only. Situations that break this principle are calledinheritance anomalies [28,32].
Reasoning considerations therefore suggest that all attributes and methods of a super-
class are inherited, but method redefinition may violate thesemantic requirements of an
interface of the superclass.

2.1 Multiple Inheritance

The focus of this paper is the formalization of an operational semantics for code reuse
through class level multiple inheritance. Multiple inheritance seems desirable because
it provides much better possibilities for sharing than single inheritance, allowing named
features (attributes and methods) from several classes to be integrated. The combination
of single inheritance and interfaces is sometimes proposedas an alternative to multiple
inheritance, but this approach has some difficulties. In particular virtual binding does
not integrate directly with delegation, and the use of private methods as well as program
variables from superclasses is problematic. Tempero and Biddle show how the reusab-
ility of the Java Core API is adversely affected by the lack ofmultiple inheritance [39].

Multiple inheritance is found in languages such as C++ [38],CLOS [12], Eiffel [31],
Full Maude [8], POOL [2], and Self [7]. Although multiple inheritance provides a flex-
ible way to describe class hierarchies, it is avoided or onlyallowed in a restricted ver-
sion (such as interfaces, abstract classes, or traits) in many languages, e.g., Java and C#.
Apart from semantic issues, two important arguments against multiple inheritance are:

276

(1) the run-time system of languages with multiple inheritance is more complex and less
efficient, and (2) inheriting from many classes increases the possibility of programmer
mistakes. However, efficient run-time systems for languages with multiple inheritance
have been developed [25, 38]. In order to address argument (2), formal methods may
contribute to a better understanding of existing multiple inheritance mechanisms and
hopefully contribute to mechanisms with better support forreasoning. The multiple
inheritance relation is transitive and defines a class hierarchy structured as a directed
acyclic graph. A class in the class hierarchy extends the features declared in its inher-
ited classes (or superclasses), possibly overloading or redefining some of these features.
We shall say that a feature is definedabovea classC if it is defined inC or in at least
one of the classes inherited byC.

2.2 Naming Policies for Conflict Resolution

From a reasoning perspective, the difficulties regarding multiple inheritance occur when
the name spaces of several inherited classes conflict, both with regard to program vari-
ables and methods [24]. A name conflict isvertical if a name occurs in a class and in
one of its ancestors, corresponding to overridden method declarations. A name conflict
is horizontalif the name occurs in distinct branches of the graph. While vertical name
conflicts are fairly well understood, different solutions have been proposed to deal with
horizontal name conflicts. One approach is to remove ambiguities byexplicit resolution.
This is achieved if a name which is inherited from several superclasses is redefined in
the subclass or directed to a superclass definition through qualification [38]. If a class is
multiply inherited, qualification by class path leads to a duplication of attributes while
qualification by class name leads to unification (virtual classes in C++). This choice
leads to one or two copies of the attributes of classA in Fig. 1b. Path qualification is
not always sufficient to distinguish two inherited instances of a class and may therefore
fail, as illustrated by Fig. 1c. Explicit resolution can also be achieved by renaming at-
tributes and methods [2, 31], thus eliminating name conflicts. When there are no name
conflicts, the inheritance graph may belinearizedand the need for explicit support for
multiple inheritance in the run-time system is avoided. This is also the case with mixin-
based inheritance [4], and with traits [35]. Mixins and traits are integrated in the linear
inheritance graph to extend and modify the resulting behavior of the superclass. How-
ever linearization has been criticized for changing the parent-child relationship between
classes in the inheritance hierarchy [36].

Ambiguities may also be seen as a natural feature of multipleinheritance, occur-
ring when related methods in different superclass hierarchies are given the same name.
From this point of view it seems less desirable to apply a naming discipline which forces
the programmer to modify names a posteriori, making the class definitions more diffi-
cult to understand. Taking this approach, ambiguities are addressed byimplicit resolu-
tion. Three approaches can be used to explain implicit resolution of ambiguous method
names. First, methods with the same name may be seen as equally appropriate. In this
case the method definitions may nondeterministically compete for selection, as in Full
Maude [8] and the Join-calculus [15]. (Redefinition is not supported by Full Maude,
whereas renaming is required in the Join-calculus.) Second, methods of the same name
may be jointly selected, extending the binding strategy of Beta to multiple inheritance.

277

A

B C

D

x
m

mm
B

D

B
x x mm

B C

D

A

B
m

m

D

Figure 1. Examples of class inheritance: (a) single inheritance, (b)a common ancestor in the
inheritance graph, (c) duplicate inheritance, and (d) multiple inheritance.

Third, ambiguities may be solved by fixing theorder of the inherited classes; this way
the strategy for selecting method definitions will be unambiguous [7,12,22]. This seems
desirable as it leaves the programmer in control.

2.3 Virtual Binding

Virtual binding (or dynamic dispatch) is a powerful mechanism of object orientation,
originally introduced in [11] for single inheritance in Simula. A method is virtually
bound if the body corresponding to a method invocation is selected at run-time. Virtual
binding is applied when the actual class of an object is not statically known. Tradition-
ally, this happens when a method invoked from a class is overridden above the actual
class of the object. When objects are typed by interfaces, many classes may implement
the same interface. Consequently all external method callsare virtually bound.

Combined with class inheritance, virtual binding allows programming with the so-
called template method pattern [16]: a base class provides architecture and subclasses
provide the specialized (auxiliary) methods, while code reuse is supported for the ar-
chitecture. The mechanism can be illustrated by an object ofclassD which executes
a method defined in its superclassA (cf. Fig. 1a) and this method makes a call to a
methodm. With virtual binding, the code selected for execution willbe associated to
the first matching signature form above D; i.e., the method inB is selected. However it
is unsettled how to virtually bind method invocations in a class hierarchy with multiple
inheritance, if methods are defined in different classes in the hierarchy. In the example
of Fig. 1b, a strategy is needed to clearly express which method definition to select
among the candidates form.

Formal models of possible solutions to multiple inheritance may contribute to better
understanding and use of multiple inheritance, and facilitate reasoning about code in-
heritance. A denotational account of multiple inheritancehas been given [6], but virtual
binding is not considered as name conflicts are assumed not tooccur.

An operational semantics in rewriting logic allows executable experimentation with
different strategies for virtual binding. For this purpose, we consider multiple inherit-
ance in the setting of the Creol language, which has a complete formalization in re-
writing logic. In previous work [22], an ordered solution was proposed in which the
binding strategy did not distinguish a virtual call from a superclass (A in Fig. 1a) and
a standard call from the subclass (C in Fig. 1a). In this paper a novel version of the

278

ordered approach is considered in which the order may vary between calls, as the or-
dering is dynamically decided by the context of each call. This new approach, called
pruned binding, avoids renaming while providing better support for the encapsulation
principle. Calls are always bound to specializations of thedefinition found by static ana-
lysis, allowing reasoning reuse for virtual calls in the setting of multiple inheritance.

Consider the case whereD inherits two unrelated classesB andC (Fig. 1d), both
with a methodm. Assume that aD object calls a method inC which in turn callsm
locally. With the ordered approach this call will bind to them of B rather than that of
C, assuming no redefinition ofm in D. This binding is clearly undesirable since them
of B is not a redefinition of that ofC. The twom methods have no relationship since
they are from unrelated class hierarchies. The example in Sect. 5 demonstrates resulting
problems. These problems are avoided with the pruned binding strategy. Furthermore,
the strategy ensures the principle that when the actual class of an object is smaller, each
local call will be bound to a smaller class. This principle isintuitive and is also useful
for reasoning control.

3 A Language for Asynchronously Communicating Objects

This section provides a basis for the technical discussion which follows. We consider a
small object-oriented language which is a subset of Creol [20,22], a high-level language
for distributed concurrent objects. We distinguish data, typed by data types, and ob-
jects, typed by interfaces. The language allows both blocking and nonblocking method
calls, based on a uniform semantics. Attributes (instance variables) and method declar-
ations are organized in classes, which may have data and object parameters. Objects
are concurrent and have their own processor which evaluateslocal processes. A pro-
cess consists of program code withprocessor release pointstogether with a local state,
representing remaining parts of method activations. Processes may beactive, reflecting
autonomous behavior initiated at creation time by therun method, orreactive; i.e., in
response to method invocations. Due to processor release points, the evaluation of pro-
cesses may be interleaved. The values of an object’s programvariables may depend on
the nondeterministic interleaving of processes. However,a method activation may have
local variables supplementing the object variables, in particular the values of formal
parameters are stored locally. An object may contain several (pending) activations of
the same method, possibly with different values for local variables.

Guardsb in statementsawait b explicitly declare potential processor release points.
When a guard which evaluates to false is encountered during process evaluation, the
process issuspendedand the processor released. After processor release, any enabled
pending process may be selected for evaluation. For the examples of this paper, it suf-
fices to consider guards as boolean expressions over programvariables, but we intro-
duce reply guards in the operational semantics (cf. Sect. 6.5).

Statements can be composed sequentially or by conditional branching. LetS1 and
S2 denote statement lists. Sequential composition may introduce inner guards:await b
is a potential release point inS1;await b; S2. Assignment to local and object variables
is expressed asV := E for a disjoint list of program variablesV and an expression listE,

279

Syntactic categories. Definitions.
s in Stm v in Var

t in Label e in Expr

m in Mtd x in ObjExpr

p in MtdCall b in BoolExpr

p ::= m|x.m|m@classname|m< classname
S ::= s|s; S

s ::= skip | (S) | V := E |v := new classname(E)

| p(E; V) |await p(E; V) |await b| if b then S1 elseS2 fi

Figure 2. A subset of the Creol language for method definitions, with typical terms for each cat-
egory. Capitalized terms such asE denote lists, sets, or multisets of the given syntactic categories.

of matching types. The reserved wordself is used for self reference. In-parameters as
well as theself andcaller pseudo-variables are read-only variables.

All object interaction happens through method calls. We consider here blocking
calls and nonblocking calls. (The full language provides more expressiveness [20].) A
nonblocking method callis writtenawait x.m(E; V). The calling process emits the call
to an objectx and suspends itself while waiting for a reply. When the replyarrives,
return values are assigned toV and evaluation continues.

A blocking method call, immediately blocking the processor while waiting for a
reply, is writtenx.m(E; V). Whenx evaluates toself, the call is said to be local. The
language does not support monitor reentrance (except for calls to self), mutual blocking
calls may therefore lead to deadlock. In order to evaluate local blocking calls, the evalu-
ation of the call will precede the continuation of the activeprocess, thereby unblocking
the processor (self-reentrance).

Internal calls are not prefixed by an object identifier and areidentified syntactically,
otherwise the call is external. All calls are virtually bound, except when the method
name is explicitly qualified by a class name,m@C. In our setting method calls can al-
ways be emitted, as a receiving object cannot block communication.Method overtaking
is allowed: if methods offered by an object are invoked in oneorder, the object may start
execution of the method activations in another order.

With nonblocking method calls, the object will not block while waiting for replies.
This approach allows flexibility in the distributed setting: suspended processes or new
method calls may be evaluated while waiting. If the called object never replies, deadlock
is avoided as other activity in the object is possible. However, when the reply arrives, the
continuationof the process must compete with other pending and enabled processes.

4 Multiple Inheritance

A mechanism for multiple inheritance is now considered, where all attributes and meth-
ods of a superclass are inherited by the subclass, and where superclass methods may be
redefined. In the syntax, the keywordinherits is introduced followed by aninheritance
list; i.e., a list of class namesC(E) whereE provides the actual class parameters.

Let a class hierarchy be a directed acyclic graph of parameterized classes. Each class
consists of a list of inherited classes, a set of attributes (program variables including
class parameters), and method definitions. The encapsulation provided by interfaces

280

suggests that external calls to an object of classC are virtually bound to the closest
method definition aboveC. However, the object may internally invoke methods of its
superclasses. In the setting of multiple inheritance and overloading, methods defined in
a superclass may be accessed from the subclass by qualified references. Vertical name
conflicts for method names are resolved in a standard way: thefirst matching definition
with respect to the types of the actual parameters is chosen while ascending a branch of
the inheritance tree. Horizontal name conflicts will be resolved dynamically depending
on the class of the object and the context of the call.

4.1 Qualified Names

Qualified names may be used to uniquely refer to an attribute or method in a class. For
this purpose, we adapt thequa construct of Simula to the setting of multiple inheritance.
For an attributex or a methodm declared in a classC, we denote byx@C andm@C
the qualified names which provide static references tox andm. By extension, ifx or m
is not declared inC, but inherited from the superclasses ofC, the qualified reference
m@C binds as an unqualified referencem fromC.

Attribute names are not visible through an object’s external interfaces. Consequently
attribute names should not be merged if inheritance leads toname conflicts, and attrib-
utes of the same name should be allowed in different classes of the inheritance hier-
archy [36]. In order to allow the reuse of attribute names, these will always be expanded
into qualified names. This is desirable in order to avoid run-time errors that may occur
if methods of superclasses assign to overloaded attributes. This qualification convention
has the following consequence: unlike C++, there is no duplication of attributes when
branches in the inheritance graph have a common superclass.Consequently if multiple
copies of the superclass attributes are needed, one has to rely on delegation techniques.

Instantiation of attributes.At object creation time, attributes are collected from the
object’s class and superclasses. An attribute in a classC is declared byvar x : T = e,
wherex is the name of the attribute,T its type, ande its initial value. The expression
e may refer to the values of the class parameter variablesV, as well as to the values
of inherited attributes by means of qualified references. The initial state values of an
object of classC then depend on the actual parameter values bound toV. These may be
passed as parameter values to inherited classes in order to derive values for the inherited
attributes, which in turn may be used to instantiate the locally declared attributes.

Accessing inherited attributes and methods.If C is a superclass ofC′, we introduce the
syntaxawait m@C(E; V) for nonblocking,andm@C(E; V) for blocking, internal calls to
a method aboveC in the inheritance graph. These calls may be bound without knowing
the exact class of theself object, so they are calledstatic, in contrast to calls without @,
calledvirtual. We assume that attributes have unique names in the inheritance graph;
this may be enforced at compile time by extending each attribute namex with the name
of the class in which it is declared, which implies that attributes are bound statically.
Consequently, a method declared in a classC may only access attributes declared above
C. In a subclass, an attributex of a superclassC is accessed by the qualified reference
x@C. This means that multiply inherited superclasses are shared, rather than duplicated.

281

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

D

C
�
�
�
�
�

�
�
�
�
�

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

D D

C

C’

Figure 3. Binding calls tom, m@C, andm< C′ from classD

Duplication may be achieved by class renaming in an inheritance list. The language
syntax is summarized in Fig. 2.

4.2 Virtual Binding

Let the nominal subtype relation≺ be a reflexive partial ordering on types, including
interfaces. A data type may only be a subtype of a data type andan interface only of an
interface. IfT ≺ T ′ then any value ofT may masquerade as a value ofT ′. For product
typesRandR′, R≺ R′ is the point-wise extension of the subtype relation; i.e.,RandR′

have the same lengthl andTi ≺ T ′
i for everyi (0≤ i ≤ l) and typesTi andT ′

i in position
i in R andR′ respectively. To explain the typing and binding of methods,≺ is extended
to function spacesA→ B, whereA andB are (possibly empty) product types:

A→ B≺ A′ → B′ = A≺ A′∧B′ ≺ B

expressing the relationship between actual and formal parameters, but not subtyping
over function spaces, which are not part of the functional language. The static analysis
of an internal callm(E; V) will assign unique types to the in and out parameter depend-
ing on the textual context, say that the parameters are textually declared asE : TE and
V : TV . The call istype correctif there is a method declarationm : A→ B in the classC,
possibly inherited, such thatTE → TV ≺ A→B. The binding of an internal nonblocking
call await m(E; V) is handled as the corresponding blocking callm(E; V). An external
call to an object of interfaceI is type correct if it can be bound to a method declaration
in I in a similar way. The static analysis of a class will verify that it implements the
methods declared in its interfaces.

Let a classC be belowa classC′ if C is C′, or is a direct or indirect subclass of
C′. Similarly, a method declaration inside a classC is belowa classC′ if C is below
C′. We introduce the syntaxm< C′ for constrained method calls, restricting the virtual
binding ofm to methods belowC′. (Static typing requires the class enclosing the call
to be belowC′.) The pruned virtual binding of method calls is now explained. (The
formalization is given in Sec. 6.4.) At run-time, a call to a method of an objecto will
always be bound above the class ofo. Let m be a method declared in an interfaceI and
let o be an instance of a classC implementingI . There are two cases:

282

1. m is called externally, in which caseC is not statically known. In this case,C is
dynamically identified as the class ofo.

2. m is called internally fromC′, a superclass of the actual classC of o. In this case
static analysis will identify the call with a declaration ofm aboveC′, say inC′′.
Consequently, we let the call be constrained byC′′, and compilation replaces the
reference tom with a reference tom< C′′.

The dynamically decided context of a call may eliminate parts of the inheritance graph
above the actual class of the callee with respect to the binding of a specific call. If a
method name is ambiguous within the dynamic constraint, we assume that any solution
is acceptable. For a natural and simple model of priority, the call will be bound to the
first matching method definition aboveC, in a left-first depth-first order. (An arbitrary
order may be obtained by replacing the inheritance list by a multiset.)

It is easy to see that run-time binding always succeeds in anywell-typed program.
When a methodm: TE →TV in an objecto of interfaceI is externally called at run-time,
the actual classC of o is dynamically decided and the virtual binding mechanism will
bind to a declarationm: A→B such thatTE →TV ≺A→B, taking the first suchmwhen
traversing the inheritance graph aboveC. Static analysis guarantees thatC implements
I and consequently that at least one method declaration ofm aboveC may be bound
to the call. An internal callm : TE → TV is made by an object of a subclassD of C
(from the static analysis) and the virtual binding mechanism will bind to a declaration of
m: A′ →B′ such thatTE → TV ≺A′ →B′, following the binding strategy constrained by
D. BecauseC is inherited byD, the virtual binding is guaranteed to succeed. However,
it is not guaranteed that the declaration aboveC which was found by static analysis will
be selected. In order to ensure that a call tom in D will choose the declaration above
C, the method may be qualified asm@C in D. For virtual calls from a superclassC′ of
C, such qualification cannot be used. In order to ensure that a virtually bound call from
a superclass will select a specialization of the staticallyfound declaration, the binding
will be constrained byC′. Even if no specialization is found, the binding will succeed
as the constraint does not remove the declaration found by static analysis.

5 Example: Combining Authorization Policies

In a database containing sensitive information and different authorization policies, the
information returned for a request will depend on the clearance level of the agent mak-
ing the request. LetAny denote the interface of arbitrary objects,Agent the interface of
agents, andAuth an authorization interface with methodsgrant(x), revoke(x), auth(x),
anddelay for agentsx. The two classesSAuth andMAuth, both implementingAuth,
implement single and multiple authorization policies, respectively. Since the attribute
gr in SAuth is implemented as an object identifier,SAuth only authorizes one agent at
a time whereasMAuth authorizes multiple agents. The methodgrant(x) returns when
x becomes authorized, and authorization is removed byrevoke(x). The methodauth(x)
suspends untilx is authorized, anddelayreturns once no agent is authorized.

283

classSAuth implementsAuth

begin with Any

var gr: Agent= null
op grant(in x:Agent) == delay;gr := x
op revoke(in x:Agent) ==

if gr = x then gr := null fi
op auth(in x:Agent) == await (gr = x)
op delay ==await (gr = null)

end

classMAuth implementsAuth

begin with Any

var gr: Set[Agent] = /0
op grant(in x:Agent) == gr := gr ∪ {x}
op revoke(in x:Agent) == gr := gr \ {x}
op auth(in x:Agent) == await (x ∈ gr)
op delay ==await (gr = /0)

end

Authorization levels. Low clearanceagents may share access to unclassified data while
high clearanceagents have unique access to (classified) data. Proper usageis defined
by two interfaces, defining open and close operations at bothaccess levels:

interface High

begin with Agent

op openH(out ok:Bool)
op access(in k:Key; out y:Data)
op closeH

end

interface Low

begin with Agent

op openL
op access(in k:Key; out y:Data)
op closeL

end

When theopenHmethod returns, the calling agent would not know whether high access
was granted, unless a boolean out parameter is present.

Let a classDB provide the actual operations on the database. We assume given
the operationsaccess(in k:Key, high:Bool; out y:Data), wherehigh defines the access
level, andclear(in x : Agent; out b : Bool) to give clearance to sensitive data for agent
x. Any agent may get low access rights, while only agents cleared by the database may
be granted exclusive high access. The classMAuth will authorize low clearance, and
SAuth will authorize high clearance.SAuth authorizes only one agent at a time.

classHAuth implementsHigh

inherits SAuth, DB
begin with Agent

op openH(out ok:Bool) ==
await clear(caller;ok);
if ok then grant(caller)fi

op access(in k:Key; out y:Data) ==
auth(caller);
await access@DB (k,true; y)

op closeH == revoke(caller)
end

classLAuth implementsLow

inherits MAuth, DB
begin with Agent

op openL == grant(caller)
op access(in k:Key; out y:Data) ==

auth(caller);
await access@DB (k,false; y)

op closeL == revoke(caller)
end

The code given here uses nonblocking calls whenever there isa possibility of local
deadlock. Thus, objects of the four classes above will be able to respond to new requests
even when used improperly, for instance when agent access isnot initiated by open.
Notice that thecaller pseudo-variable is used to pass on agent identity in local calls.
Thewith Agent clauses imply thatAgent is the type ofcaller, ensuring strong typing.

284

The database itself has no interface containingaccess, therefore all database access
is through theHigh andLow interfaces. Notice also that objects of theLAuth andHAuth
classes may not be used through theAuth interface. This would have been harmful for
the authorization provided in the example. For instance, a call to grant to a HAuth
object could then result in highaccesswithout clearance of the calling agent! This
supports the approach not to inherit implementation clauses.

Combining authorization levels.High and low authorization policies may be combined
in a subclassHLAuth which implements both interfaces, inheritingLAuth andHAuth.

classHLAuth implementsHigh, Low

inherits LAuth, HAuth
begin with Agent

op access(in k:Key; out y:Data) == if caller=gr@SAuth
then access@HAuth(k; y) elseaccess@LAuth (k; y) fi

end

Notice that the same database is used for bothHigh andLow interaction. Although the
DB class is inherited twice,HLAuth gets only one copy (cf. Sect. 4.1).

The example demonstrates natural usage of classes and multiple inheritance. Nev-
ertheless, it reveals problems with the combination of inheritance andstatically ordered
virtual binding: Objects of the classesLAuth andHAuth work well, in the sense that
agents opening access through theLow andHigh interfaces get the appropriate access.
However the addition of the common subclassHLAuth is detrimental, assuming a fixed
inheritance ordering: When used through theHigh interface, this class would allowmul-
tiple high accessto data! Calls to theHigh operations ofHLAuth will trigger calls to the
HAuth methods. From these methods the virtual internal calls togrant, revoke, andauth
will now bind to those of theMAuth class, if selected in a left-most depth-first traversal
of the inheritance tree of the actual classHLAuth. Note that if the inheritance ordering
in HLAuth were reversed, similar problems occur with the binding ofLow interaction.

Theprunedbinding strategy proposed in this paper ensures that the virtual internal
calls inside classesHAuth and LAuth will be bound in classesSAuth and MAuth,
respectively, regardless of the actual class of the caller (HAuth, LAuth, or HLAuth)
and of the inheritance ordering inHLAuth. In particular thegrant call insideHAuth
will be understood asgrant< SAuth, which may not bind tograntof MAuth.

6 An Operational Semantics of Inheritance and Virtual Binding

The operational semantics is defined using rewriting logic [29]. A rewrite theory is
a 4-tupleR = (Σ,E,L,R), where the signatureΣ defines the function symbols of the
language,E defines equations between terms,L is a set of labels, andR is a set of
labeled rewrite rules. From a computational viewpoint, a rewrite rule t −→ t ′ may be
interpreted as alocal transition ruleallowing an instance of the patternt to evolve into
the corresponding instance of the patternt ′. Each rewrite rule describes how a part of
a configuration can evolve in one transition step. If rewriterules may be applied to

285

non-overlapping subconfigurations, the transitions may beperformed in parallel. Con-
sequently, concurrency is implicit in rewriting logic (RL). A number of concurrency
models have been successfully represented in RL [8, 29], including Petri nets, CCS,
Actors, and Unity, as well as the ODP computational model [33]. RL also offers its own
model of object orientation [8].

Informally, a state configuration in RL is a multiset of termsof given types. Types
are specified in (membership) equational logic(Σ,E), the functional sublanguage of RL
which supports algebraic specification in the OBJ [17] style. When modeling compu-
tational systems, configurations may include the local system states. Different parts of
the system are modeled by terms of the different types definedin the equational logic.

RL extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules, supplementing the equations which
define the term language. Assuming that all terms can be reduced to normal form, re-
write rules transform terms modulo the defining equations ofE. Conditional rewrite
rules are allowed, where the condition is formulated as a conjunction of rewrites and
equations which must hold for the main rule to apply:

subconfiguration−→ subconfigurationif condition.

Rules in RL may be formulated at a high level of abstraction, closely resembling a
compositional operational semantics. In fact, structuraloperational semantics can be
uniformly mapped into RL specifications [30].

6.1 System Configurations

A method call will be reflected by a pair of messages, and object activity will be organ-
ized around amessage queuewhich contains incoming messages and aprocess queue
which contains suspended processes, i.e. remaining parts of method activations. Mes-
sages have the general formmessageto destwheredest is a single object or class, or
a list of classes. A state configuration is a multiset combining Creol objects, classes,
and messages. (In order to increase the parallelism in the model, message queues could
be external to object bodies as shown in [20, 22].) As usual inRL, the associative con-
structor for lists, as well as the associative and commutative constructor for multisets,
are represented by whitespace.

In RL, objects are commonly represented by terms of the type〈o : C |a1 : v1, . . . ,an :
vn〉 whereo is the object’s identifier,C is its class, theai ’s are the names of the ob-
ject’s attributes, and thevi ’s are the corresponding values [8]. We adopt this form of
presentation and define Creol objects and classes as RL objects. Omitting RL types,
a Creol object is represented by an RL object〈Ob|Cl,Pr,PrQ,Lvar,Att,Lab,EvQ〉,
whereOb is the object identifier,Cl the class name,Pr the active process code,PrQ
a multiset of suspended processes with unspecified queue ordering,EvQ a multiset of
unprocessed messages, andLvar andAtt the local and object state, respectively. Let
τ be a type partially ordered by<, with least element 1, and letnext : τ → τ be such
that ∀x.x < next(x). Lab is the method call identifier corresponding to labels in the
language, of typeτ. Thus, the object identifierOb and the generated local label value
provide a globally unique identifier for each method call.

286

The classes of Creol are represented by RL objects〈Cl | Inh,Att,Mtds, Tok〉, where
Cl is the class name,Inh is the inheritance list,Att a list of attributes,Mtds a multiset
of methods, andTok is an arbitrary term of typeτ. When an object needs a method, it
is bound to a definition in theMtdsmultiset of its class or of a superclass.

In RL’s object model [8], classes are not represented explicitly in the system config-
uration. This leads to ad hoc mechanisms to handle object creation, which we avoid by
explicit class representation. The Creol constructnewC(E) creates a new object with
a unique object identifier, attributes as listed in the classparameter list and inAtt, and
places the code from therunmethod inPr.

6.2 Concurrent Transitions

Concurrent change is achieved in the operational semanticsby applying concurrent
rewrite steps to state configurations. There are four different kinds of rewrite rules:

– Rules that execute code from the active process:For every program statement there
is at least one rule. For example, the assignment rule for theprogramV := E binds
the values of the expression listE to the listV of local and object variables.

– Rules for suspension of the active process:When an active process guard evaluates
to false, the process and its local variables are suspended,leavingPr empty.

– Rules that activate suspended processes:WhenPr is empty, suspended processes
may be activated. When this happens, the local state is replaced.

– Transport rules:These rules move messages into the message queues, representing
network flow.

When auxiliary functions are needed in the semantics, theseare defined in equational
logic, and are evaluated in between the state transitions [29]. The rules related to method
calls, virtual binding, and object creation are now considered in detail. In the presenta-
tion irrelevant attributes are ignored in the style of Full Maude [8].

6.3 Method Calls

Blocking and nonblocking calls are given a uniform semantics. In the operational se-
mantics, objects communicate by sending messages. Two messages encode a method
call. We here assume that the types of the actual in- and out-parameters of the call have
been added to the method invocation as an additional argument Sig at compile time. If
an objecto1 calls a methodmof an objecto2, with actual typeSigand actual parameters
In, and the execution ofm(Sig, In) results in the return valuesOut, the call is reflected
by two messagesinvoc(m,Sig,(n o1 In)) to o2 andcomp(n,Out) to o1, which represent
the invocation and completion of the call, respectively. Inthe asynchronous setting, in-
vocation messages must include the caller’s identity, so completions can be transmitted
to the correct destination. Objects may have several pending calls to another object, so
the completion message includes a locally unique label valuen, generated by the caller.

A blocking call p(Sig, In; V), whereV is a list of variables andp one of the forms
x.m, m@C, or m< C, is translated into anasynchronous call, !p(Sig, In), immediately
followed by a blockingreply statement, n?(V), wheren is the label value uniquely
identifying the call:

287

〈o:Ob|Pr : p(Sig, In; V); S,Lab : n〉 = 〈o:Ob|Pr : !p(Sig, In);n?(V); S,Lab : n〉

A nonblocking call is understood as an asynchronous call followed by areply guard:

〈o:Ob|Pr : await p(Sig, In; V); S,Lab : n〉
= 〈o:Ob|Pr : !p(Sig, In);await n?;n?(V); S,Lab : n〉

A reply guardawait n? evaluates to true when acomp message with the label value
n has arrived, in which case the reply statementn?(V) will assign the return values to
V, otherwise the active process is suspended (see below). Consequently, it suffices to
consider asynchronous invocations, and blocking and guarded replies to capture both
blocking and nonblocking method calls.

When an object calls an external method, a message is placed in the configuration:

〈o:Ob|Pr : !x.m(Sig, In); S,Lvar : L,Att : A,Lab : n〉
−→

〈o:Ob|Pr : S,Lvar : L,Att : A,Lab : next(n)〉
invoc(m,Sig,(n oeval(In,(A; L)))) to eval(x,(A; L))

wherex is an object expression,m a method name, andeval is a function which evalu-
ates an expression (list) in the context of a state. Whenxevaluates too, the object creates
an invoc message to itself. Similarly, an internal call gives rise tothe same invocation
message:

〈o:Ob|Pr : !p(Sig, In); S,Lvar : L,Att : A,Lab : n〉
−→

〈o:Ob|Pr : S,Lvar : L,Att : A,Lab : next(n)〉
invoc(p,Sig,(n oeval(In,(A; L)))) to o

wherep is of the formm@C or m < C. The constraintC will be used in the virtual
binding as described below.

Transport rules take charge of messages, which eventually arrive at the destination’s
message queue:

(invoc(E) to o) 〈o : Ob|EvQ : Q〉 −→ 〈o : Ob|EvQ : Q invoc(E)〉
(comp(E) to o) 〈o : Ob|EvQ : Q〉 −→ 〈o : Ob|EvQ : Q comp(E)〉

These rules model loose distribution of objects. Message overtaking is captured by the
nondeterminism inherent in RL: messages sent by an object toanother object in one
order may arrive in any order.

The caller may wait for a completion in a reply statement to synchronize on the
completion of the call, or in a reply guard. The reply statement n?(V) blocks until the
appropriate reply message has arrived in the message queue.This blocking is captured
by a rule requiring matching label values in the active statement and the event queue:

〈o:Ob|Pr : (n?(V); S),EvQ : Q comp(n,Out)〉
−→ 〈o:Ob|Pr : (V := Out; S),EvQ : Q〉

In the model,EvQ is a multiset; thus the rule will match any occurrence ofcomp(n,Out)
in the queue. Remark that blocking reply statements associated with calls to self require
special treatment in order to avoid deadlock [20].

288

6.4 Virtual and Static Binding of Method Calls

In order to allow concurrent and dynamic execution, the fullinheritance graph will not
be statically given. Rather, the binding mechanism dynamically inspects the current
class hierarchy as present in the configuration. Our approach to virtual binding is to use
abind message to be sent from a class to its superclasses, resulting in aboundmessage
returned to the object generating thebind message. This way, the inheritance graph is
explored dynamically and as far as necessary when needed. When the invocation of a
methodm is found in the message queue of an objecto, a messagebind(o,m, In) to C
can be generated by dynamically retrieving the classC of the object. HereSig is the
method signature as provided by the caller andIn is the list of actual in-parameters:

〈o:Ob|Cl : C,EvQ : invoc(m,Sig, In) Q〉
−→ 〈o:Ob|Cl : C,EvQ : Q〉 (bind(m,Sig, In,o) to C)

The same applies to internal static callsm@C. Static method calls are generated without
inspecting theactualclass of the callee, thus surpassing local definitions:

〈o:Ob|EvQ : invoc(m@C,Sig, In) Q〉 −→ 〈o:Ob|EvQ : Q〉 (bind(m,Sig, In,o) to C)

If a suitablem is defined locally inC, a process with the method code and local state is
returned in aboundmessage. Otherwise, thebind message is retransmitted to the su-
perclasses ofC in a left-first, depth-first order. In order to easily traverse the inheritance
graph, an inheritance list is used as the destination of thebind message:

(bind(m,Sig, In,o) to C I) 〈C:Cl | Inh : I ′,Mtds : M〉
−→ if match(m,Sig,M) then bound(get(m,M, In)) to o

elsebind(m,Sig, In,o) to (I ′ I) fi 〈C:Cl | Inh : I ′,Mtds : M〉

The auxiliary predicatematch(m,Sig,M) evaluates to true ifm is declared inM with
a signatureSig′ such thatSig≺ Sig′, and the functionget returns a process with the
method’s code and local state from the method multisetM of the class. (Static checking
ensures that virtual binding will succeed.) Values of the actual in-parametersIn, the
caller o′, and the label valuen are stored locally. The processw resulting from the
binding is loaded into the internal process queue:

(bound(w) to o) 〈o:Ob|PrQ: W〉 −→ 〈o:Ob|PrQ: W w〉

Note that the use of rewrite rules rather than equations mimics distributed and concur-
rent processing of method lookup.

Internal virtual binding. The binding of an internal virtual callm< C′ constrained by
C′ is slightly more complex. When a match in a classC is found, the inheritance graph
of C is checked to ensure thatC is belowC′, otherwise the binding must resume:

(bind(m< C′,Sig, In,o) to C I) 〈C:Cl | Inh : I ′,Mtds : M〉
−→ if match(m,Sig,M) then (find(C′

,C) to C) (stopbind(m<C′
,Sig, In,o) to C I)

elsebind(m,Sig, In,o) to (I ′ I) fi 〈C:Cl | Inh : I ′,Mtds : M〉

(found(b,C′) to C) (stopbind(m,Sig, In,o) to C I) 〈C:Cl | Inh : I ′,Mtds : M〉
−→ if b then bound(get(m,M, In)) to o elsebind(m,Sig, In,o) to I fi

〈C:Cl | Inh : I ′,Mtds : M〉

289

wherestopbindis an additional message used to suspend binding while checking that
C is belowC′. This is done by two auxiliary messages: The messagefind(C,o) to I
represents thato is askingI if C is found in I or further up in the hierarchy, whereas
found(b,C) to o gives the answer too, where the booleanb is true if the request was
successful. This can be formalized by the rewrite rules (ignoring class parameter lists)

find(C,o) to ε −→ found(false,C) to o

find(C,o) to I C I ′ −→ found(true,C) to o

(find(C,o) to C′ I) 〈C′ :Cl | Inh : I ′〉 −→ (find(C,o) to I I ′) 〈C′ :Cl | Inh : I ′〉 if (C 6= C′)

This search corresponds to breadth-first, left-first traversal of the inheritance graph.

6.5 Guarded Statements

Guards represent potential processor release points. Guards may be boolean or reply
guards. When a guard is encountered, the execution continues if the guard is enabled:

〈o : Ob|Pr : awaitg; S,Lvar : L,Att : A,EvQ : Q〉
−→

〈o : Ob|Pr : S,Lvar : L,Att : A,EvQ : Q〉 if enabled(g,(A,L),Q)

Enabledness is defined by induction over the construction ofguards by the predicate

enabled(n?,D,Q) = n in Q enabled(b,D,Q) = eval(b,D)

whereD denotes a state, and the functionin checks whether a completion message
corresponding to the given label value is in the message queue Q. Enabledness is ex-
tended to statement lists, considering the head statement,and considering unguarded
statements as enabled. When a non-enabled guard is encountered, the active process is
suspendedon the process queue:

〈o : Ob|Pr : S,PrQ: W,Lvar : L,Att : A,EvQ : Q〉
−→

〈o : Ob|Pr : ε,PrQ: (W 〈S, L〉),Lvar : ε,Att : A,EvQ : Q〉 if not enabled(S,(A; L),Q)

where〈S,L〉 denotes the process with statementsS and local stateL. If there is no active
process, a suspended process can bereactivatedif it is enabled:

〈o : Ob|Pr : ε,PrQ: 〈S,L〉 W,Lvar : L ′,Att : A,EvQ : Q〉
−→

〈o : Ob|Pr : S,PrQ: W,Lvar : L,Att : A,EvQ : Q〉 if enabled(S,(A,L),Q)

This rule allows any enabled process to continue becausePrQ is a multiset.

6.6 Object Creation and Attribute Instantiation

Object creation results in a new object with a unique identifier. The new object makes an
initial blocking call to itsrun method (if present in the class), thereby initiating active
object behavior and leaving the programmer in control of defining the initial release

290

point. New object identifiers are created by concatenating tokensn from the unbounded
setTok to the class name. The identifier is returned to the object which initiated the
object creation.

〈o:Ob|Pr : v := newC(In); S,Lvar : L,Att : A〉 〈C:Cl |Att : A ′,Tok : n〉
−→

〈o:Ob|Pr : v := newid; S,Lvar : L,Att : A〉 〈C:Cl |Att : A ′
,Tok : next(n)〉

〈newid:Ob|Cl : C,Pr : run,PrQ: ε,Lvar : ε,Att : ε,Lab : 1,EvQ : ε〉
inherit(newid,ε) to C(eval(In,(A,L)))

Here,newid denotes the new identifier. Before the new object can be activated, its
initial state must be created. This is done by collecting attribute lists, which consist of
program variables bound to initial expressions, from the classes inherited byC. The
initial expressions must be reduced to values and bound to the program variables in the
state. Class parameters and inherited attributes provide amechanism to pass values to
the initial expressions of the inheritance list in a class. The variables bound by the class
parameters are stored first in the attribute list of a class inthe textual order.

An inherit message, which sends an object identifier and a substitutionto a class
inheritance list, causes the inheritance tree to be traversed in a right-first depth-first
order, while dynamically accumulating all inherited attributes and their initializing ex-
pressions, passing on appropriate class parameters as stated in the inheritance lists. The
traversal results in a list of attributes with initializingexpressions, which are evaluated
by evalSfrom left to right and delivered to the new object. The attribute list is ordered
such that the attributes of a superclass precede those of a subclass, for all classes above
the class of the object. Consequently, the type system can guarantee that all variables
occurring in an initial expression of a program variablev have been instantiated before
v is instantiated.

inherit(o, IA) to nil = inherited(evalS((self 7→ o) IA),ε) to o

inherit(o, IA) to (I C(In)) 〈C:Cl | Inh : I ′,Att : IA ′〉
= inherit(o,(pass(IA ′, In) IA)) to (I I ′) 〈C:Cl | Inh : I ′,Att : IA ′〉

The auxiliary functionpasspasses class parameters, given as expressions, to an attribute
list andevalS(IA ,A) evaluates attributes inIA from left to right, given a stateA.

pass(IA ,ε) = IA

pass(((v 7→ e) IA),e′ E′) = (v 7→ e′) pass(IA ,E′)

evalS(ε,A) = ε
evalS((v 7→ e) IA ,A) = (v 7→ eval(e,A)) evalS(IA ,(v 7→ eval(e,A)) A)

The resulting state is consumed by the new object by the equation

(inherited(A) to o) 〈o:Ob|Att : ε〉 = 〈o:Ob|Att : A〉

Notice again that the use of equations enables a new object tobe created and initialized
in a single rewriting step.

In the presence of multiple inheritance, a classC may inherit a superclass several
times. The equation

291

A (v 7→ e) A ′ (v 7→ e′) = A (v 7→ e) A ′

on attribute lists ensures that an attribute is only stored once. Thus multi-inheritance of
the same class is the same as inheriting the class once, keeping the leftmost instantiation.
Duplicate classes may be achieved by class renaming in inheritance lists.

7 Related Work

Formal models clarify the intricacies of object orientation and may thus contribute to
better programming languages in the future, making programs easier to understand,
maintain, and reason about. Work on object calculi such as the ς-calculus [1] capture
object-oriented features such as self-reference, encapsulation, and method calls. Con-
current object calculi [13,18] extend these mechanisms to multithreaded and distributed
systems, but the complexities of class inheritance are not addresses in [1,13,18]. A con-
current object calculus with single inheritance is presented by Laneve [26]. Methods of
superclasses are accessible and virtual binding is addressed due to a careful renam-
ing discipline. A denotational semantics for single inheritance with similar features is
studied by Cook and Palsberg [9]. Multiple inheritance is not addressed in these works.

Formalizations of multiple inheritance in the literature are usually based on the
objects-as-recordsparadigm. This approach focuses on subtyping issues related to sub-
classing, but issues related to method binding are not easily captured. Even access to
methods of superclasses is not addressed in Cardelli’s denotational semantics of mul-
tiple inheritance [6]. Rossi, Friedman, and Wand [34] propose a formal definition of
multiple inheritance based onsubobjects, a run-time data structure used for virtual
pointer tables [25, 38]. This formalism focuses on compile time issues and does not
clarify multiple inheritance at the abstraction level of the programming language.

Multiple inheritance is supported in languages such as C++ [38], CLOS [12], Eif-
fel [31], POOL [2], and Self [7]. As discussed in Sect. 2.1, horizontal name conflicts in
C++, POOL, and Eiffel are removed by explicit resolution, after which the inheritance
graph may be linearized. Multiple dispatch, or multi-methods [12], gives a more power-
ful binding mechanism, but does not handle the problems considered here, since they
appear even for methods without any parameters. Also reasoning about multi-methods
is difficult in case of redefinition.

A natural semantics for virtual binding in Eiffel is proposed in [3]. This work is
similar in spirit to ours and models the binding mechanism atthe abstraction level
of the program, capturing Eiffel’s renaming mechanism. Mixin-based inheritance [4]
and traits [35] also depend upon linearization to be merged correctly into the single
inheritance chain. Linearization changes the parent-child relationship between classes
in the inheritance hierarchy [36]. Consequently understanding, e.g., method binding
quickly becomes difficult.

Full Maude [8] and the Join-calculus [15] model multiple inheritance by disjoint
union of methods. Name ambiguity lets method definitions compete for selection. The
definition selected when an ambiguously named method is called, may be nondetermin-
istically chosen. Alternatively, programmer control may be improved if inherited classes
are ordered [7,12], resulting in a deterministic binding strategy. However, the ordering

292

of superclasses may result in surprising but “correct” behavior. The example of Sect. 5
displays such surprising behavior regardless of how the inherited classes are ordered.

The dynamically typed prototype-based language Self [7] proposes an elegantpri-
oritized binding strategyto solve this problem, although a formal semantics is not given.
The strategy is based on combining ordered and unordered multiple inheritance. Each
superclass is annotated with a priority, and many superclasses may have the same pri-
ority. A name is only ambiguous if it occurs in two superclasses with the same priority,
in which case a class related to the caller class is preferred. However, explicit class
priorities may have surprising effects in large class hierarchies: names may become
ambiguous through inheritance. If neither class is relatedto the caller the binding does
not succeed, resulting in a method-not-understood error.

The pruned binding strategyproposed in this paper solves these issues without
the need for manually declaring (equal) class priorities and without the possibility of
method-not-understood errors: Calls are only bound to intended method redefinitions.
The new binding strategy seems particularly useful during system maintenance to avoid
introducing unintentional errors in evolving class hierarchies, as targeted by the Creol
language [23]. In particular, we have given an operational semantics based on dynamic
and distributed traversal of the available classes, ratherthan through virtual pointer
tables. Our approach may therefore be combined with dynamicconstructs for changing
the class inheritance structure, such as adding a classC and enriching an existing class
with C as a new superclass, which could be useful in open reconfigurable systems.

8 Conclusion

The treatment of ambiguous naming in object-oriented languages with multiple inher-
itance is unsettled. Disallowing naming ambiguities when inheriting multiple super-
classes imposes undesirable restrictions with regard to, e.g., programming flexibility
and code maintenance. Ordering inherited classes solves ambiguities by fixing the bind-
ing strategy above a given class. However, virtual binding combined with a fixed order
may lead to surprising but “correct” effects. This paper hasproposed thepruned bind-
ing strategyto ensure that overriding is intended. This strategy dynamically restricts
the ordered inheritance graph depending on the context of the call, using the concept of
constrained method call (m<C). This construct is also useful for fine grained program-
mer control of virtual binding in the case of multiple inheritance. The pruned binding
strategy and constrained method calls remove unintended effects of ordered inheritance
while ensuring that binding will always succeed. The binding strategy is combined with
intentional redirection through qualified references and with redefinition in the subclass.
In this paper, an operational semantics for the proposed binding strategy has been given
in rewriting logic. Although the formalization is given in the setting of Creol, the mech-
anisms presented here could easily be lifted to another setting.

Acknowledgment.The authors would like to thank Stein Krogdahl for interesting dis-
cussions on multiple inheritance and virtual binding. The comments of the FMCO an-
onymous referees have improved the presentation.

293

References

1. M. Abadi and L. Cardelli.A Theory of Objects. Springer, New York, NY, 1996.
2. P. America and F. van der Linden. A parallel object-oriented language with inheritance and

subtyping. In N. Meyrowitz, editor,Proc. of the Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 161–168. ACM Press, Oct. 1990.

3. I. Attali, D. Caromel, and S. O. Ehmety. A natural semantics for Eiffel dynamic binding.
ACM Transactions on Programming Languages and Systems, 18(6):711–729, 1996.

4. G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz, editor,Proc. of the
Conf. on Object-Oriented Programming: Systems, Languages, and Applications / Eur. Conf.
on Object-Oriented Programming, pages 303–311. ACM Press 1990.

5. K. B. Bruce, A. Schuett, R. van Gent, and A. Fiech. PolyTOIL: A type-safe polymorphic
object-oriented language.ACM Transactions on Programming Languages and Systems,
25(2):225–290, 2003.

6. L. Cardelli. A semantics of multiple inheritance.Information and Computation, 76(2-
3):138–164, 1988.

7. C. Chambers, D. Ungar, B.-W. Chang, and U. Hölzle. Parentsare shared parts of objects:
Inheritance and encapsulation in SELF.Lisp and Symb. Computation, 4(3):207–222, 1991.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F. Quesada.
Maude: Specification and programming in rewriting logic.Theoretical Computer Science,
285:187–243, Aug. 2002.

9. W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness.In-
formation and Computation, 114(2):329–350, Nov. 1994.

10. W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In17th Symp. on
Principles of Programming Languages (POPL’90), pages 125–135. ACM Press, Jan. 1990.

11. O.-J. Dahl and K. Nygaard. Class and subclass declarations. In J. Buxton, editor,Simulation
Programming Languages, pages 158–174. North-Holland, 1968. Reprinted in M. Broy and
E. Denert, eds.,Software Pioneers — Contributions to Software Engineering, Springer, 2002.

12. L. G. DeMichiel and R. P. Gabriel. The common lisp object system: An overview. In
J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman, editors,Eur. Conf. on Object-Oriented
Programming (ECOOP’87), LNCS 276, pages 151–170. Springer, 1987.

13. P. Di Blasio and K. Fischer. A calculus for concurrent objects. In U. Montanari and V. Sas-
sone, editors,7th Intl. Conf. on Concurrency Theory (CONCUR’96), LNCS 1119, pages
655–670. Springer, Aug. 1996.

14. C. Fischer and H. Wehrheim. Behavioural subtyping relations for object-oriented formal-
isms. In T. Rus, editor,8th Intl. Conf. on Algebraic Methodology and Software Technology
(AMAST 2000), LNCS 1816, pages 469–483. Springer, 2000.

15. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join calculus.Journal
of Logic and Algebraic Programming, 57(1-2):23–69, 2003.

16. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

17. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OBJ.
In J. A. Goguen and G. Malcolm, editors,Software Engineering with OBJ: Algebraic Spe-
cification in Action, pages 3–167. Kluwer, 2000.

18. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing.
In U. Nestmann and B. C. Pierce, editors,High-Level Concurrent Languages (HLCL’98),
volume 16(3) ofElectronic Notes in Theoretical Computer Science. Elsevier, 1998.

19. E. B. Johnsen and O. Owe. A compositional formalism for object viewpoints. In B. Jacobs
and A. Rensink, editors,Proc. 5th Intl. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’02), pages 45–60. Kluwer, Mar. 2002.

294

20. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed con-
current objects. InProc. 2nd Intl. Conf. on Software Engineering and Formal Methods
(SEFM’04), pages 188–197. IEEE Press, Sept. 2004.

21. E. B. Johnsen and O. Owe. Object-oriented specification and open distributed systems. In
O. Owe, S. Krogdahl, and T. Lyche, editors,From Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan Dahl, LNCS 2635, pages 137–164. Springer, 2004.

22. E. B. Johnsen and O. Owe. Inheritance in the presence of asynchronous method calls. In
Proc. 38th Hawaii Intl. Conf. on System Sciences (HICSS’05). IEEE Press, Jan. 2005.

23. E. B. Johnsen, O. Owe, and I. Simplot-Ryl. A dynamic classconstruct for asynchronous
concurrent objects. InProc. 7th Intl. Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’05), LNCS 3535, pages 15–30. Springer, June 2005.

24. J. L. Knudsen. Name collision in multiple classificationhierarchies. In S. Gjessing and
K. Nygaard, editors,Eur. Conf. on Object-Oriented Programming (ECOOP’88), LNCS 322,
pages 93–109. Springer, 1988.

25. S. Krogdahl. Multiple inheritance in Simula-like languages.BIT, 25(2):318–326, 1985.
26. C. Laneve. Inheritance in concurrent objects. In H. Bowman and J. Derrick, editors,Formal

methods for distributed processing – a survey of object-oriented approaches, pages 326–353.
Cambridge University Press, 2001.

27. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, Nov. 1994.

28. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented concur-
rent programming languages. In G. Agha, P. Wegner, and A. Yonezawa, editors,Research
Directions in Concurrent Object-Oriented Programming, pages 107–150. The MIT Press,
Cambridge, Mass., 1993.

29. J. Meseguer. Conditional rewriting logic as a unified model of concurrency.Theoretical
Computer Science, 96:73–155, 1992.

30. J. Meseguer and G. Rosu. Rewriting logic semantics: Fromlanguage specifications to formal
analysis tools. In D. A. Basin and M. Rusinowitch, editors,Proc. of the 2nd Intl. Joint Conf.
on Automated Reasoning (IJCAR 2004), LNCS 3097, pages 1–44. Springer, 2004.

31. B. Meyer.Object-Oriented Software Construction. Prentice Hall, NJ., 1997.
32. G. Milicia and V. Sassone. The inheritance anomaly: ten years after. InProc. of the Symp.

on Applied Computing, pages 1267–1274. ACM Press, 2004.
33. E. Najm and J.-B. Stefani. A formal semantics for the ODP computational model.Computer

Networks and ISDN Systems, 27:1305–1329, 1995.
34. J. G. Rossie Jr., D. P. Friedman, and M. Wand. Modeling subobject-based inheritance. In

P. Cointe, editor,10th Eur. Conf. on Object-Oriented Programming (ECOOP’96), LNCS
1098, pages 248–274. Springer, July 1996.

35. N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable units of be-
haviour. In L. Cardelli, editor,Proc. 17th Eur. Conf. on Object-Oriented Programming
(ECOOP 2003), LNCS 2743, pages 248–274. Springer, 2003.

36. A. Snyder. Inheritance and the development of encapsulated software systems. In B. Shriver
and P. Wegner, editors,Research Directions in Object-Oriented Programming, pages 165–
188. The MIT Press, 1987.

37. N. Soundarajan and S. Fridella. Inheritance: From code reuse to reasoning reuse. In
P. Devanbu and J. Poulin, editors,Proc. Fifth Intl. Conf. on Software Reuse (ICSR5), pages
206–215. IEEE Press, 1998.

38. B. Stroustrup. Multiple inheritance for C++.Computing Systems, 2(4):367–395, Dec. 1989.
39. E. Tempero and R. Biddle. Simulating multiple inheritance in Java.The Journal of Systems

and Software, 55(1):87–100, Nov. 2000.

295

