
Combining Graphical and Formal Development
of Open Distributed Systems?

Einar B. Johnsen1,3, Wenhui Zhang2, Olaf Owe1, Demissie B. Aredo2,4

1Dept. of Informatics, University of Oslo, Norway, {einarj,olaf}@ifi.uio.no
2Institute for Energy Technology, Halden, Norway

3BISS, FB3, University of Bremen, Germany, einar@tzi.de
4Norwegian Computing Center, Oslo, Norway, aredo@nr.no

Abstract A specification of a software system involves several aspects.
Two essential aspects are convenience in specification and possibility for
formal analysis. These aspects are, to some extent, exclusive. This paper
describes an approach to the specification of systems that emphasizes
both aspects, by combining UML with a language for description of the
observable behavior of object viewpoints, OUN. Whereas both languages
are centered around object-oriented concepts, they are complementary in
the sense that one is graphical and semi-formal while the other is textual
and formal. The approach is demonstrated by a case study focusing on
the specification of an open communication infrastructure.

1 Introduction

In order to develop open distributed systems, we need techniques and tools for
specification, design, and code generation. For the specification of such systems,
it can be desirable to use graphical notations, so that specifications are intuitive
and easy to understand, and misunderstandings and mistakes thereby hopefully
avoided. On the other hand, it is also desirable for the specification technique to
have a formal basis which supports rigorous reasoning about specifications and
designs. As there is no single existing method that covers all the desired aspects
adequately, we have chosen to extend, adapt, and combine existing formal meth-
ods and tools into a platform for specification, design, and refinement of open
distributed systems. In this approach, we integrate the Unified Modeling Lan-
guage (UML) [6, 20] modeling techniques, the Oslo University Notation (OUN)
specification language [12, 21], and the Prototype Verification System (PVS)
specification language [22] in a common platform [26].

UML is a comprehensive notation for creating a visual model of a system. It
is a dynamic specification language based on a combination of popular modeling
languages [5, 10, 24] and has become a widely used standard for object-oriented
software development. As a modeling language, UML allows a description of a
? This work is financed by the Research Council of Norway under the research program
for Distributed IT-Systems.

In: M. Butler, L. Petre, K. Sere (Eds.): Integrated Formal Methods (IFM 2002),
p. 319 – 338, LNCS 2335, Springer-Verlag, May 2002.

system in great detail at any level of abstraction. UML does not rely on a spe-
cific development process, although it facilitates descriptions and development
processes that are case-driven, architecture centric, iterative, and incremental.
It provides notations needed to define a system with any particular architecture
and does so in an object-oriented way. The graphical notation of UML includes
class diagrams, object diagrams, use case diagrams, interaction diagrams (includ-
ing sequence diagrams and collaboration diagrams), statechart diagrams, activ-
ity diagrams, component diagrams, and deployment diagrams. These diagrams
allows us to describe central aspects of the overall system. However, rigorous
reasoning in UML is difficult as the language lacks a formal semantics.

OUN is a high-level object-oriented design language which supports the de-
velopment of open distributed systems. The language is designed to enable formal
reasoning in a convenient manner. In particular, reasoning control is based on
static typing and proofs, and generation of verification conditions is based on
static analysis of program or specification units. A system design in OUN consists
of classes, interfaces, and contracts, however in this paper we will only consider
specification by means of interfaces. An object in OUN can support a number
of interfaces and this number can change dynamically.

In contrast to OCL [27], OUN lets us capture aspects of the observable beha-
vior of objects in terms of input and output. For open systems, implementation
details of components may not be available, but the behavior of a component can
be locally determined by its interaction with the environment [1]. OUN objects
may have internal activity and run in parallel. They communicate asynchron-
ously by means of remote methods calls and exchange object identities. Object
interaction is recorded in communication traces [8,14,23], so the semantics of the
language is trace-based. In OUN, the observable behavior of an object can be
specified by several interfaces that represent aspects of the object’s behavior. An
interface is specified syntactically by an alphabet and semantically by predicates
on traces. Hence, an interface identifies a set of finite traces reflecting possible
communication histories of a component (or object) at different points of time.
Requirement specifications of interfaces consider observable behavior in the form
of an input/output-driven assumption guarantee paradigm; invariant predicates
about output are guaranteed when assumption predicates about input are re-
spected by the communication environment. For these predicates, we may use
patterns that describe the traces of the system in a graphical style reminiscent
of message sequence charts.

PVS is a specification language based on higher-order logic. It has a rich type
system including predicate subtypes and dependent types. These features make
the language very expressive, but type checking becomes undecidable. In addi-
tion, there are type constructors for functions, tuples, records, and abstract data
types. PVS specifications are organized into theories and modularity and reuse
are supported by means of parameterized theories. PVS has a powerful verifica-
tion tool which uses decision procedures for simplifying and discharging proofs,
and provides many proof techniques such as induction, term rewriting, backward
proofs, forward proofs, and proof by cases, for interactive user intervention.

320

The purpose of the integration of the techniques is to exploit the advantages
of UML for high-level specification with graphical notations, the formal notation
provided by OUN for specification of additional aspects concerning the observ-
able behavior of objects or components, and the theorem-proving capabilities of
PVS for verification of correctness requirements. The system development pro-
cess in our approach consists of the following steps: informal specification of user
requirements; partial specifications in UML; extension of the UML interface spe-
cifications into OUN specifications; translation of the partial specifications into
a PVS specification; verification and validation of the specification with PVS
tools; and code generation (for instance towards Java). The emphasis here is on
specification, verification aspects are briefly considered at the end of the paper.

This approach is demonstrated by a case study. We consider a specifica-
tion of the SoftwareBus system1, an object-oriented data exchange system
developed at the OECD Halden Reactor Project [2]. The system itself is not
safety critical, but, depending on the user applications of the system, it may
have safety implications. For instance, the PLASMA plant safety monitoring
and assessment system [7] is based on the SoftwareBus communication pack-
age. Important functions of the system include: providing the current safety
status of the plant, online monitoring of the safety function status trees, display-
ing the pertinent emergency operating procedures, and displaying the process
parameters which are referenced in the procedures. Another application of the
SoftwareBus system is data communication mechanism in the SCORPIO core
surveillance system [16], a system supporting control room operators, reactor
physicists, and system supervisors. The SCORPIO system has two modes: mon-
itoring and predicting, and the main purpose of the system is to increase the
quality and quantity of information and enhance plant safety by detecting and
preventing undesired core conditions. Correctness and reliability of such systems
are important, e.g. presentation of wrong information may lead to wrong control
actions and trigger safety protection actions, which could contribute to the pos-
sibility of failure with safety consequences. Consequently, rigorous specification
and formal analysis of the underlying communication framework are important.

The paper is organized as follows. In Section 2, the functionality of the Soft-
wareBus system is described and a possible system architecture proposed. In
Section 3, a specification of the SoftwareBus system is presented, using the
UML modeling techniques. In Section 4, we extend the UML interface specific-
ations into OUN and show how graphical patterns are used to capture the ob-
servable behavior of the components. Section 5 considers robustness issues and
illustrates how fault-tolerance can be added to the system in OUN. In Section 6,
we discuss the usefulness of our approach.

1 As the purpose of this paper is to illustrate our approach to system development,
considerable simplifications have been made. Readers interested in the system are
referred to the web-page http://www.ife.no/swbus for detailed documentation.

321

User
Application 1

User
Application n

System

Figure 1. Basic structure of the SoftwareBus system with user applications.

2 Functionality of the Software Bus

The main motivation for constructing distributed systems considered in this
paper arises from the need for surveillance and control of processes in power
plants. For this purpose, data collected from processes have to be processed and
presented. As the same set of data may be a basis for presentation in different
forms at different locations, data sharing among user applications is a necessity.

To begin with, we may think of a system with an unknown number of poten-
tial user applications connected to it, as shown in Figure 1. The user applications
communicate with the system in order to carry out necessary data processing
tasks. These include the creation of variables, the assignment of values to vari-
ables, accessing the values of variables, and the destruction of variables.

The SoftwareBus system is an object-oriented system in which classes, func-
tions, and variables are treated as SoftwareBus objects, i.e. as manipulatable
units in the SoftwareBus system. A SoftwareBus object can be identified in
two ways. First, by its identifier: In the implementation of the SoftwareBus
system, an object identifier identifies a row in a table where object information
is stored. Second, by the object’s name and its parent’s identifier, as objects are
organized in a hierarchy where the top level represents the local application or
proxy objects representing remote applications. A pointer type is used for the
contents of objects, i.e. pointers to places in user applications where the contents
of objects are stored, and another type is used for codes of functions. In addition,
variables holding references to remote applications are grouped as a type. There-
fore, we have the following basic types: SbTName for object names, SbTSti
for local object identifiers, SbTContents for contents of objects, SbTCode for
code of functions, and SbTApplication for references to applications. SbT-
Sti is a general type for identifying SoftwareBus objects. We classify different
objects or objects used in different contexts into subtypes of SbTSti.

2.1 System Interfaces

With the system architecture of Figure 1, we only need to consider one inter-
face, which is the interface the system provides towards user applications. This
interface includes operations for initializing user applications, establishing logical
connections with other applications, and manipulating SoftwareBus objects:

322

Name sb_initialize
Arguments name: SbTName
Return Value none
Description signals that a calling user application enters the system.

Name sb_exit
Arguments none
Return Value none
Description signals that the calling user application leaves the system.

Name sb_connect_appl
Arguments appl_name: SbTName
Return Value appl_ref: SbTApplication
Description establishes a logical connection with appl_name.

Name sb_disconnect_appl
Arguments appl_ref: SbTApplication
Return Value none
Description destroys the logical connection to appl_ref.

Name sb_id
Arguments name: SbTName

parent_ref: SbTStiParent
Return Value obj_ref: SbTSti
Description obtains the reference of (a proxy of) the object identified

by name and parent_ref.

Name sb_delete_obj
Arguments obj_ref: SbTSti
Return Value none
Description deletes the object identified by obj_ref.

The operations sb_initialize and sb_exit are invoked by a user applic-
ation in order to enter and leave the SoftwareBus system, respectively. The
operations sb_connect_appl and sb_disconnect_appl concern the logical
connections between processes. To establish a logical connection, the remote ap-
plication (identified by appl_name) must have entered the system prior to the
method invocation. The operations sb_id and sb_delete_obj are for object
manipulation. For brevity, other object manipulation operations (e.g. for creat-
ing subclasses, modifying classes, creating instances of classes, using attributes
and methods of such instances) are not described here. The parameter parent_ref
of the operation sb_id identifies either the local application, an object in the
local application, a remote application, or a proxy of an object of a remote ap-
plication. A proxy needs to be created if name identifies a remote object without
a proxy in the local application. SbTStiParent is a subtype of SbTSti that
represents SoftwareBus objects used as parent objects in given contexts.

323

User
Application 1

User
Application i

User
Application j

User
Application n

Data Server Data Server1 n

Portmapper
SoftwareBus

Figure 2. Decomposition of SoftwareBus.

2.2 Decomposition of the System

A centralized system architecture is not the best choice for a distributed com-
puting environment with respect to efficiency, communication overhead, and re-
liability. A better solution is to keep as much data as possible in or near the user
applications that possess the data, and provide a mechanism for data sharing.
Figure 2 shows a decomposition of the system based on this principle.

With this architecture, the system consists of a central unit and a set of
data servers. The purpose of the central unit is to maintain information about
the data servers and their user applications, while the purpose of the servers
is to store data that is shared among user applications. In this system, a user
application communicates with a data server in order to carry out necessary
data processing tasks. Depending on requests from the user application, the
data server may communicate directly with another data server to fulfill the
requests or communicate with the central unit if information about other servers
is requested or needed. The number of data servers and their locations is not
predetermined. Data servers may be started at any location, whenever necessary.

Two interfaces need to be specified. One is the interface of the central unit
towards data servers and the other is the interface of a data server to other data
servers. To be consistent with the terminology of the SoftwareBus document-
ation [2], we call the central unit a portmapper in the sequel. The interface
provided by the portmapper to data servers includes the following operations:
pm_initialize, pm_exit, pm_connect_appl, and pm_disconnect_appl.

These operations are the internal equivalents of the data server operations
starting with sb, except that the internal operations have an additional input
parameter of type SbTApplication. Think that all calls from user applications
to the system are delivered by a data server. Upon receipt of a call sb_m
(with m being one of initialize, exit, connect_appl, and disconnect_appl)
from a user application, the data server forwards the call to the portmapper by

324

calling pm_m. The additional input parameter is used to identify the calling
user application in order to ensure that returns to calls are transmitted correctly.

The operations of the interface provided by data servers to other data serv-
ers are similar (with respect to the functionality) to the interface provided by
the system to user applications, if we omit the operations associated with the
portmapper, i.e. the operations sb_initialize, sb_exit, sb_connect_appl,
and sb_disconnect_appl. When a user application calls an operation of the
system, these four operations are forwarded to the portmapper while the other
operations are handled by a data server. The data server may issue a corres-
ponding call to another data server when necessary.

3 UML Specification

In this section, we present a specification of the SoftwareBus system using UML
modeling techniques. First, we give static structural descriptions of the major
system components such as interfaces, classes (or objects), and relationships
among them, as outlined in the previous section. For this purpose, we model
basic elements like classes, components, and the interfaces that they provide to
each other. Then, the static structure and the dynamic behavior of the system
can be specified by putting together the basic elements into UML diagrams.

3.1 External Interfaces

The external interface of the SoftwareBus specifies operations available to user
applications. These operations can be grouped into two: those concerned with ob-
ject manipulations and those dealing with communication between user applica-
tions and the SoftwareBus system. Accordingly, we decompose the interface to-
wards external user applications into two subinterfaces: SB_SoftwareBusData
and SB_SoftwareBusConnections. The operations of these interfaces have
been discussed in the previous section. Here, we describe the interfaces and their
relationships to the SoftwareBus system using the UML graphical notation.

For the purpose of this paper, the interface SB_SoftwareBusData includes
at least the operations sb_id and sb_delete_obj. In the actual Software-
Bus system, several other operations are provided for object manipulation. The
specification, given as a UML interface, is as follows.

�interface�
SB_SoftwareBusData

sb_id(name,parent_ref; obj_ref)
sb_delete_obj(obj_ref)

...

The interface SB_SoftwareBusData consists of operations for object ma-
nipulation. The interpretation of operation signatures is as follows. In the list

325

Figure 3. SoftwareBus interfaces.

of parameters, values that occur before the symbol “;” are input parameters,
whereas the remaining values are output parameters. The types of the paramet-
ers are as specified in the previous section.

The interface SB_SoftwareBusConnections consists of operations that
handle connections between the system and the user applications. The specific-
ation, given as a UML interface, is as follows.

�interface�
SB_SoftwareBusConnections

sb_initialize(name)
sb_exit()

sb_connect_appl(appl_name; appl_ref)
sb_disconnect_appl(appl_ref)

The relationships between the SoftwareBus system and its external inter-
faces are depicted in a UML class diagram in Figure 3.

3.2 Internal Interfaces

By “internal” interfaces, we mean the interfaces that the different parts of the
SoftwareBus system provide to each other, in contrast to the interfaces that are
available to the user applications. The internal structure of the SoftwareBus
system consists of a portmapper with a set of data servers. A description of the
SoftwareBus system in terms of its classes is shown in Figure 4. We consider
two interfaces SB_Portmapper and SB_DataServer, provided by the port-
mapper to data servers and by data servers to other data servers, respectively.
SB_Portmapper resembles SB_SoftwareBusConnections, specified as follows:

326

Figure 4. The SoftwareBus component and its classes.

�interface�
SB_Portmapper

pm_initialize(name;user_ref)
pm_exit(user_ref)

pm_connect_appl(user_ref,server_name; server_ref)
pm_disconnect_appl(user_ref,server_ref)

The interface SB_DataServer is similar to SB_SoftwareBusData, so the
description is omitted. The class diagram given in Figure 5 shows the classes and
internal interfaces of the SoftwareBus system and relationships among them.

Figure 5. SoftwareBus class diagram.

Remarks on Implementation Issues. In theory, a user application may commu-
nicate with the system by contacting any data server. However, this complicates
the communication pattern. A possible solution is a one-to-one mapping between
user applications and data servers. With such a mapping, parameters to method
calls can be simplified, as the identity of the user application at the source of a
call is given by its corresponding data server. In this paper, we have adopted a
more general solution, where several applications can use the same data server.

327

For simplicity, we nevertheless assume that an application does not employ sev-
eral data servers during the same session (i.e. without exiting the SoftwareBus
and reconnecting via the new server). In practice, a user application and its
corresponding data server are often implemented in one component [2].

4 OUN Specification

OUN allows the specification of observable behavior by means of interfaces.
Thus, an object considered through an interface represents a specific viewpoint
to the services provided by the object. There may be several interfaces associated
with an object, which give rise to supplementary behavioral specifications of the
same object. Proof obligations arise in order to verify that objects of a given class
actually fulfill the requirements of the interfaces they claim to implement [21]. In
this section, we semantically restrict the UML interfaces of Section 3 to obtain
OUN interfaces that express the behavior of the SoftwareBus interfaces.

In OUN, the interfaces of an object do not only contain syntactic method
declarations, they also specify aspects of the observable behavior of that object,
i.e. the possible communication histories of the object when a particular subset
of its alphabet is taken into account. The alphabet of an interface consists of
a set of communication events reflecting the relevant method calls for the cur-
rently considered role of the object. Say that a method “m” is implemented by
some object o and it is called by another object o′ with parameters p1, . . . , pn
and returns with values v1, . . . , vm. The call is represented by two distinct com-
munication events: first, o′→o.m(p1, . . . , pn) reflects the initiation of the method
call and then, o′←o.m(p1, . . . , pn; v1, . . . , vm) reflects the completion of the call.

The aspect of an object’s behavior that is specified by an interface is given
by (first-order) predicates on finite sequences of such communication events.
For each interface there are two (optional) predicates, an assumption and an
invariant. The assumption states conditions on objects in the environment of
the object, so it is a predicate that should hold for sequences that end with
input events to the object. The assumption predicate should be respected by
every object in the environment; we consider communication with one object at
a time. The invariant guarantees a certain behavior when the assumption holds,
so the invariant is given by a predicate on the sequences ending with output
from the object. When an assumption or an invariant predicate is omitted in the
specification of an interface, we understand it as “true”.

For the specification of the boundary between users and the SoftwareBus
system, two interfaces are introduced: SB_SoftwareBus and SB_User. The
first interface is offered by the SoftwareBus to its users. The second interface is
an “empty” interface used to identify users. OUN objects are always considered
through interfaces, so all objects need interfaces, even if they do not contain
methods that are accessible to the environment. In the next section, we consider
requirements on the OUN objects that provide the SB_SoftwareBus interface.

328

4.1 External Interfaces

In OUN, an interface may inherit other interfaces. Using inheritance, the inter-
face of the SoftwareBus can be specified as follows.

interface SB_SoftwareBus
inherits SB_SoftwareBusData,

SB_SoftwareBusConnections
begin
end

Here, SB_SoftwareBusData and SB_SoftwareBusConnections are as discussed
in the previous section, without any semantic restrictions. Operations are inher-
ited automatically from the UML interface specifications via the Integrator [26].
In this section, we extend the interfaces with behavioral constraints.

SB_SoftwareBusData. This interface considers object manipulation between ap-
plications in the SoftwareBus. (For remote object manipulation, logical connec-
tions between applications are established via the SB_SoftwareBusConnections
interface.) After initialization, the user application may talk to the Software-
Bus in order to create new objects and manipulate existing objects. It is assumed
that no objects are known a priori to a user. References to objects are obtained
from the SoftwareBus before they are passed on as arguments in method invoc-
ations. Knowledge of an object reference is obtained either through the creation
of that object by the user or by a call to sb_id with the appropriate paramet-
ers. We capture knowledge of object references by a predicate on the history. Let
known(x, y, r, h) express that the object reference r is known by the application
x, where h is its history of communication with the SoftwareBus y, defined as
follows for the operations considered in this paper:

known(x, y, r, ε) = false
known(x, y, r, h ` x←y.sb_id(_,_; r)) = true
known(x, y, r, h ` x←y.sb_delete_obj(r)) = false
known(x, y, r, h ` others) = known(x, y, r, h)

Here, cases are considered in the order listed (à la ML), so we recursively in-
spect the history until one of the cases apply. The symbols “ε” and “`” denote
the empty trace and the right append operation, respectively. Furthermore, we
represent by “_” an uninteresting parameter in parameter lists. In the last case,
“others” will match any event. When the history is empty, the object reference
has not been obtained and the predicate returns “false”. Likewise, if an object
has been deleted, it cannot have a reference. If the reference has been obtained
by means of the method sb_id, the predicate returns “true”. As we consider the
last event first, we normally do not need to inspect the entire history.

The communication environment of the SoftwareBus is dynamic as objects
may be (remotely) created and destroyed at run-time. We want to capture by a
function on the history the requirement that objects are referred to only when
they are known to the user application. If a method call refers to i objects, the

329

references to all i objects must be checked. (In this simplified version of the
SoftwareBus, we only consider methods with one reference to check.) Define
a predicate correctObjRef(x, y, h) to express that all object references that are
passed as parameters to events between the user application x and the Soft-
wareBus y in the history h are known to x, as follows:

correctObjRef(x, y, ε) = true
correctObjRef(x, y, h ` x→y.sb_id(_, r;_))

= known(x, y, r, h) ∧ correctObjRef(x, y, h)
correctObjRef(x, y, h ` x→y.sb_delete_obj(r))

= known(x, y, r, h) ∧ correctObjRef(x, y, h)
correctObjRef(x, y, h ` others) = correctObjRef(x, y, h)

The methods of SB_SoftwareBusData should only be available to users, i.e.
access should be restricted to objects that provide the SB_User interface, which
is an empty interface in the sense that it contains no methods. This is done
by a WITH-clause in the specification of SB_SoftwareBusData. In the interface
below, we denote by “this” the object specified by the interface and by “caller”
an object offering the SB_User interface.

interface SB_SoftwareBusData
begin

with SB_User
[operations as in the UML specification]

asm correctObjRef(caller,this,h)
end

In the specification, asm is the keyword preceding assumptions. Assumptions
are requirements on the environment, i.e. they are expected to hold for histories
ending with input to “this” object. Inputs to an object x are either initiations of
calls to methods declared in x or completions of calls made by x to other objects.
It is implicit in the formalism that assumption predicates must hold for output
as well as input, as the trace sets of interfaces are prefix-closed [11]. An object
may not break its own assumption. Although no particular invariant predicate
is specified for SB_SoftwareBusData, we still get as invariant the assumption
predicate, but for histories that end with output from “this” object.

SB_SoftwareBusConnections. The sequence of events expected to hold between
the SoftwareBus and a particular application is described by an assumption,
naturally expressed by a prefix of a pattern.

Let p be an OUN object which offers the SB_SoftwareBusConnections in-
terface (i.e. p is the SoftwareBus). Let h be the history of p. The sequence
of events in the alphabet of the SoftwareBus that reflect calls from some user
application a can be described by the following predicate (for convenience, we
write c_a for connect_appl and d_a for disconnect_appl).

correctComSeq(a, p, h) =
h prp [a↔p.sb_initialize() [a↔p.sb_c_a(_;_) a↔p.sb_d_a(_)]∗

a↔p.sb_exit()]∗

330

In the specifications, h ptn P denotes that the trace h adheres to the pattern
P , which is a regular expression extended with simple pattern matching [11].
Subpatterns may be enclosed in square brackets. The prefix predicate h prp P
expresses invariant properties; it is true if there is an extension h′ of h such
that hh′ ptn P , where hh′ is the concatenation of the two traces h and h′.
The notation o1↔o2.m(. . .) is shorthand for the initiation event o1→o2.m(. . .)
immediately succeeded by the completion o1←o2.m(. . .). This corresponds to
synchrony if the two events are perceived as immediately succeeding each other
by both parties. For brevity, the same notation used in sets represents both the
initiation and the completion event. Using projection on the history, the more
graphical style of behavioral constraints given by patterns can also be used to
capture specific aspects of the behavior, rather than the more state-resembling
predicates previously encountered. Denote by h/S a trace h restricted to events of
a set S. The following predicate determines whether an application a is registered
in the SoftwareBus system with portmapper p after history h:

up(a, p, h) =
h/{a↔p.sb_initialize(), a↔p.sb_exit()}
ptn [a↔p.sb_initialize() a↔p.sb_exit()]∗ a↔p.sb_initialize().

The SoftwareBus may receive requests from an application a1 for the refer-
ence of another application a2 (known to a1 only by name) in order to establish
a logical connection. Before such a connection is possible, both a1 and a2 must
already be registered in the system. The following predicate determines whether
a1 has a logical connection to a2:

connection(a1, a2, p, h) =
h/{a1↔p.sb_c_a(_; a2), a1↔p.sb_d_a(a2)}
ptn [a1↔p.sb_c_a(_; a2) a1↔p.sb_d_a(a2)]∗ a1↔p.sb_c_a(_; a2).

Using these predicates, the requirement that connections are only opened
to applications that have registered with the SoftwareBus and that only those
connections are closed that are currently open, is expressed by a predicate on the
history, checking that up holds before sb_c_a(a2) is called and that connection
holds before sb_d_a(a2) is called.

cn(p, ε) =true
cn(p, h ` a1←p.sb_c_a(_; a2)) =cn(p, h) ∧ up(a1, p, h) ∧ up(a2, p, h)
cn(p, h ` a1←p.sb_d_a(a2)) =cn(p, h) ∧ connection(a1, a2, p, h)
cn(p, h ` others) =cn(p, h)

With these predicates, the interface SB_SoftwareBusConnections can be spe-
cified as follows:

interface SB_SoftwareBusConnections
begin

with SB_User
[operations as in the UML specification]

asm correctComSeq(caller,this, h)
inv cn(this, h)

end

331

In the specification, inv is the keyword preceding invariant predicates. Invariants
are guaranteed by the object offering the interface, provided that the assumption
is not broken by any object in the environment. Invariant predicates are con-
sequently expected to hold for histories ending with output from “this” object,
in contrast to the assumptions that should hold for histories ending with input.
Thus, interface behavior is specified following an input/output-driven assump-
tion guarantee paradigm.

4.2 Internal Interfaces

As explained in Section 3, the internal structure of the SoftwareBus consists
of a portmapper with a set of data servers. We now consider interfaces for the
portmapper and the data servers in OUN.

The interface SB_Portmapper is similar to SB_SoftwareBusConnections.
Let p be an OUN object which offers the SB_Portmapper interface (i.e. p is the
portmapper). Let h be the history of p. The sequence of calls that we expect
from a data server d to the portmapper p can be described by a predicate:

correctComSeq′(d, p, h) =
h prp [d↔p.pm_initialize(_;_) [d↔p.pm_c_a(_,_;_) d↔p.pm_d_a(_,_)]∗

d↔p.pm_exit(_)]∗

The following predicates on the history of the portmapper are used to de-
termine whether an application a is registered in the SoftwareBus system and
whether the application a1 has a logical connection to a2, respectively.

up′(a, p, h) =
∃d : h/ {d↔p.pm_initialize(n; a), d↔p.pm_exit(a)}
ptn [d↔p.pm_initialize(n; a) d↔p.pm_exit(a)]∗ d↔p.pm_initialize(n; a).

connection′(a1, a2, p, h) =
∃d : h/ {d↔p.pm_c_a(a1,_; a2), d↔p.pm_d_a(a1, a2)}
ptn [d↔p.pm_c_a(a1,_; a2) d↔p.pm_d_a(a1, a2)]∗ d↔p.pm_c_a(a1,_; a2).

In the SoftwareBus system, applications connect and disconnect to each
other. Two applications should not attempt to connect unless both are registered
with the portmapper. Also, two applications should not attempt to disconnect
unless they already have an open connection. This can be expressed by a pre-
dicate on the history of the portmapper as follows.

cn′(p, ε) =true
cn′(p, h ` d←p.pm_c_a(a1,_; a2)) =cn′(p, h) ∧ up′(a1, p, h) ∧ up′(a2, p, h)
cn′(p, h ` d←p.pm_d_a(a1, a2)) =cn′(p, h) ∧ connection′(a1, a2, p, h)
cn′(p, h ` others) =cn′(p, h)

332

The expected behavior of the data servers in the environment becomes the
assumption predicate of the SB_Portmapper interface. The correct transmittal
of references is the responsibility of the portmapper. Hence, using the predicates
defined above, the interface SB_Portmapper can be specified as follows:

interface SB_Portmapper
begin

with SB_DataServer
[operations as in the UML specification]

asm correctComSeq′(caller,this, h)
inv cn′(this, h)

end

SB_DataServer is similar to SB_SoftwareBusData and is omitted here.

5 Adding Robustness to the Portmapper

The SoftwareBus system, as specified in the previous sections, is clearly prone
to errors. In particular, the SoftwareBus has a dynamic structure where user
applications can join or exit the system at any time and objects can be (re-
motely) created, modified, and deleted. This may cause difficulty as previously
valid object or application names and references may no longer be available
to the environment. Of primary interest is the robustness of the portmapper,
on which the entire system depends. We want to remove situations that may
cause deadlock in the portmapper, to ensure that the communication framework
is operative even when user applications have deadlocked. (In open distributed
systems like the SoftwareBus, the robustness of user applications is outside our
control.) Possible deadlocks in the portmapper will be avoided by issuing excep-
tions in response to method calls from user applications when regular behavior
is out of place. In this section, we consider modifications of the specifications
that make the portmapper more robust.

We will follow the methodology outlined in [13], where several refinement
relations are proposed for a stepwise development of OUN specifications with
regard to fault-tolerance. The relations ensure that, after appropriate manip-
ulation of the traces, the behavior of the intolerant specification is recovered.
The exact relation required in each case depends on how the safety and liveness
properties of the intolerant specification should be preserved. (In this paper,
only safety properties are considered.) The occurrence of a fault is represented
in the formalism by a special event, replacing the usual completion event and
thus acting as an error message in response to a method call. Upon receipt of
the error message, the calling object may choose its course of action. In the syn-
tax of OUN interfaces, the keyword throws precedes the fault classes that are
handled by an exceptional completion event.

In the specification of the portmapper, consider the following exceptions:

– F1: An application tries to register to the system with a name that is in use.
– F2: An application tries to connect to another, unavailable application.

333

– F3: An application tries to close a connection that is not open.

We refer to these error situations as fault classes F1, F2, and F3, respectively.
In all three cases, the portmapper should return an exceptional completion event
in response to the erroneous method call and continue as if the fault had not
occurred. We now modify the interface of the portmapper accordingly.

Inside the SoftwareBus, data servers register user applications with the
portmapper. Let in_use(h) denote a function on the history of the portmap-
per that calculates the set of application names currently in use for Software-
Bus applications. A fault of class F1 occurs when an application name a is
already in use by a user application at the invocation of pm_initialize(a). If
x←y.m(i1, . . . , in; . . .) is a completion event in response to an invocation of a
method m with inputs i1, . . . , in and F is a fault class, let x←y.mF (i1, . . . , in)
denote the F -exception event raised in response to this invocation of m. Let
reg(h) express that F1 exception events are issued correctly, where h is the
history of the portmapper:

reg(h ` d←p.pm_initialize(a;_)) = a 6∈ in_use(h) ∧ reg(h)
reg(h ` d←p.pm_initializeF1(a)) = a ∈ in_use(h) ∧ reg(h)
reg(h ` others) = reg(h)

Here, different completion events are issued in response to calls to pm_initialize(a),
depending on whether the name a is currently used in the system or not.

Next, we specify when exception events for fault classes F2 and F3 should
be issued. If a1 attempts to connect to a2, the portmapper should respond by
an F2 exception when ¬up(a2, h) (where h is the current history). Similarly,
an F3 exception should be issued in response to an attempt to disconnect a
non-existing connection. Let cn′′ modify the cn′ predicate:

cn′′(p, ε) = true
cn′′(p, h ` a1←p.pm_c_a(_, a2;_)) = up(a2, h) ∧ cn′′(p, h)
cn′′(p, h ` a1←p.pm_c_aF2(_, a2;_)) = ¬up(a2, h) ∧ cn′′(p, h)
cn′′(p, h ` a1←p.pm_d_a(_, a2)) = connection′(a1, a2, p, h) ∧ cn′′(p, h)
cn′′(p, h ` a1←p.pm_d_aF3(_, a2)) = ¬connection′(a1, a2, p, h) ∧ cn′′(p, h)
cn′′(p, h ` others) = cn′′(p, h)

The predicates cn′′ and reg regulate output from the portmapper, so together
they become the invariant of the robust portmapper interface. We will now adapt
the assumption of SB_Portmapper to handle exceptional completion events.
We assume that for initialization and for opening connections, an application
can attempt to repeat a call that fails. Define the new assumption predicate:

correctComSeq′′(a, p, h) =
h prp [a↔p.pm_initializeF1(_;_)∗ a↔p.pm_initialize(_;_)

[a↔p.pm_c_aF2(_,_;_)∗ a↔p.pm_c_a(_,_;_)
a↔p.pm_d_a(_,_) a↔p.pm_d_aF3(_,_)∗]∗

a↔p.pm_exit()]∗

With these modified predicates, we specify the robust portmapper interface:

334

interface SB_RobustPortmapper
begin

with SB_DataServer
opr pm_initialize(; object_ref) throws F1
opr pm_exit()
opr pm_c_a(user_ref, server_name; server_ref) throws F2
opr pm_d_a(user_ref, server_ref) throws F3

asm correctComSeq′′(caller, this, h)
inv cn′′(this, h) ∧ reg(h)

end

Ignoring failed method calls in the SB_RobustPortmapper interface, i.e.
exception events and the initiation events that correspond to them, we obtain
the intolerant interface SB_Portmapper. In this sense, the robust portmapper
interface is a fault-tolerant refinement of the intolerant portmapper [13]. If we
adapt the data servers to the considered fault classes, faults can to some degree
be kept within the SoftwareBus, without penetrating to the outside, which
gives us a certain fault transparency for the SoftwareBus system. The robust
portmapper tolerates possibly incorrect and deadlocked user applications and
the communication framework per se remains operational.

6 Discussion

In this paper, we consider how to combine graphical and formal specification
notations to develop a dynamic communication framework. We study a simpli-
fied version of the OECD SoftwareBus system [2], focusing on the basic in-
frastructure needed to exchange data between applications. Our study does not
cover all the operations and functionality needed for actual applications. The
OECD SoftwareBus provides this communication functionality using specially
designed methods for remote creation, modification, and deletion of objects and
classes, which can be captured with the methodology outlined in this paper.

Our approach starts with graphical specifications in UML and we develop a
formal specification of the SoftwareBus system, concentrating on the central
aspects of communication and openness. UML interface specifications are exten-
ded into the textual specification language OUN by predicates on traces, in order
to enable formal reasoning about behavior. OUN interface behavior relies on ex-
plicit communication histories rather than state variables. We illustrate various
ways of extracting information from the traces by predicates and patterns that
mimic a graphical specification style. In the case study, OUN is used to capture
dynamic system behavior, such as initialization of new user applications, con-
nections between applications that open or close, and applications that exit the
SoftwareBus system, by means of these predicates. Hence, the formalism lets
us capture the flexibility of the SoftwareBus system in a rigorous way.

OUN supports formal development of specifications, syntactically by means
of interface inheritance and semantically by means of refinement. In the case
study, more complete specifications of the object interfaces can be obtained

335

through (multiple) inheritance [12]. With our design, the data servers are of
particular interest, forming the junction between the external and internal views
of the system. The data servers communicate with local user applications, the
portmapper, and with remote user applications connected to the SoftwareBus.
Through inheritance, we can combine behaviors that are captured in different
interfaces. Also, OUN provides us with an incremental approach to system ro-
bustness [13], as illustrated in the case study.

The development process proposed here is based on a formalization of UML
specifications, rather than a formalization of UML itself. The advantage of using
UML constructs for specification is that these constructs are intuitive, com-
monly accepted, and used in industrial software development. UML constructs
are important to describe initial software requirements, normally a result of dis-
cussions between users and systems analysts (or software engineers). Extending
UML interface specifications, we obtain specifications in OUN that capture dy-
namic aspects not easily expressible in UML or OCL [27]. Although OCL extends
UML with object invariants and pre- and postconditions for methods, precise
specification of output from objects is still difficult to capture in OCL as the
language expresses constraints on object attributes and not on communication
events [15]. OCL, as well as other object-oriented formalisms such as Object-
Z [25], Maude [18], and temporal logic-based approaches such as TLA [17], spe-
cify components by an abstract implementation using state variables. For open
distributed systems, it is perhaps better to perceive the behavior of a component
as locally determined by its interaction with the environment [1]. In OUN, inter-
face specification is based on the observable behavior of black-box components.

We are recommended to specify open distributed systems by means of object
orientation and multiple viewpoints [9]. Both UML and OUN support these fea-
tures. OUN is object-oriented, including notions of inheritance and object iden-
tity, in contrast to process algebras like CSP [8], the π-calculus [19], LOTOS [4],
and Actors [1]. As UML and OCL lack a formally defined semantics and proof
system, OUN is a suitable supplement for formal reasoning, with precise notions
of composition and refinement.

Our approach relies on PVS [22] as a tool for consistency checking and veri-
fication of specifications. Basic modeling constructs and conditions of UML class
diagrams can be expressed in the PVS specification language in terms of func-
tions and abstract data types [3]. For further system development, OUN spe-
cifications are translated into PVS in order to formally verify the correctness
of development steps. As OUN notions of composition and refinement are ex-
pressed in PVS, OUN syntax can be translated into PVS in terms of trace sets
to take advantage of the PVS theorem proving facilities [11]. A framework for
the consistency check was described in [26] where software specification is done
within a system development environment which integrates Rational Rose (a tool
supporting UML from Rational Software Corporation) and the PVS toolkit in
order to cover the software development process from specification of system re-
quirements, system design, and verification, to code generation. Code generation
facilities for OUN specifications are currently under development.

336

7 Conclusion

This paper proposes an approach to the specification of open distributed sys-
tems, based on a combination of UML and OUN specification techniques. To
illustrate the approach, we develop parts of a specification of an open communic-
ation framework where data and resources are exchanged between applications
and where applications connect and disconnect over time. In the development
process, graphical UML constructs are used to specify interfaces, classes, and
their relations. Class diagrams in UML are expanded into OUN interface spe-
cifications by restricting the implicit history variables of communication calls.
With first-order predicates for assumption and invariant clauses, we specify the
observable behavior of components. OUN permits formal reasoning about sys-
tem development and captures certain forms of openness by textual analysis, as
shown in the case study.

For the development of open distributed systems, OUN is well-suited as a
complement to UML. UML is the de facto industry standard and uses intuitive
graphical notation, but it lacks the formalization necessary for rigorous system
development and the concepts needed to capture the dynamic aspects of reactive
systems. In OUN, reasoning is both compositional and incremental. Software
units can be written, formally analyzed, and modified independently, while we
have control of the maintenance of earlier proven results. The formalism lets us
capture dynamic behavior that is not easily handled in UML.

Acknowledgments: This work is a part of the ADAPT-FT project. The au-
thors thank H. Jokstad and E. Munthe-Kaas for discussions, suggestions, and
helpful comments.

References

1. G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7(1):1–72, Jan. 1997.

2. T. Akerbæk and M. Louka. The software bus, an object-oriented data exchange
system. Technical Report HWR-446, OECD Halden Reactor Project, Institute for
Energy Technology, Norway, Apr. 1996.

3. D. B. Aredo, I. Traore, and K. Stølen. Towards a formalization of UML class
structure in PVS. Research Report 272, Dept. of Informatics, Univ. of Oslo, 1999.

4. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, 1987.

5. G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin-
Cummings, Redwood City, CA, 1991.

6. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, Massachusetts, USA, 1999.

7. J. Eiler. Critical safety function monitoring: an example of information integration.
In Proceedings of the Specialists’ Meeting on Integrated Information Presentation
in Control Rooms and Technical Offices at Nuclear Power Plants (IAEA-I2-SP-
384.38), pages 123–133, Stockholm, Sweden, May 2000.

337

8. C. A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall, Englewood Cliffs, NJ, 1985.

9. ITU Recommendation X.901-904 ISO/IEC 10746. Open Distributed Processing -
Reference Model parts 1–4. ISO/IEC, July 1995.

10. I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-Oriented Soft-
ware Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.

11. E. B. Johnsen and O. Owe. A PVS proof environment for OUN. Research Report
295, Department of informatics, University of Oslo, 2001.

12. E. B. Johnsen and O. Owe. A compositional formalism for object viewpoints.
In Proc. 5th International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS 2002). Kluwer Academic, 2002. To appear.

13. E. B. Johnsen, O. Owe, E. Munthe-Kaas, and J. Vain. Incremental fault-tolerant
design in an object-oriented setting. In Proceedings of the Asian Pacific Conference
on Quality Software (APAQS’01). IEEE press, Dec. 2001.

14. G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information Processing 74: Proceedings of the IFIP Congress 74,
pages 471–475. IFIP, North-Holland Publishing Co., Aug. 1974.

15. A. Kleppe and J. Warmer. Extending OCL to include actions. In A. Evans, S. Kent,
and B. Selic, editors, Proceedings of UML 2000, volume 1939 of Lecture Notes in
Computer Science, pages 440–450, York, UK, Oct. 2000. Springer-Verlag.

16. F. Kostiha. Establishment of an on-site infrastructure to facilitate integration of
software applications at Dukovany NPP. In Proceedings of the Specialists’ Meeting
on Integrated Information Presentation in Control Rooms and Technical Offices at
Nuclear Power Plants (IAEA-I2-SP-384.38), Stockholm, Sweden, May 2000.

17. L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

18. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96:73–155, 1992.

19. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, May 1999.

20. Object Management Group. UML Language Specification, version 1.4, Sept. 2001.
21. O. Owe and I. Ryl. OUN: a formalism for open, object oriented, distributed sys-

tems. Research Report 270, Dept. of informatics, Univ. of Oslo, Aug. 1999.
22. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-

tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 21(2):107–125, Feb. 1995.

23. D. L. Parnas and Y. Wang. The trace assertion method of module interface spe-
cification. Technical Report 89-261, Department of Computing and Information
Science, Queen’s University at Kingston, Kingston, Ontario, Canada, Oct. 1989.

24. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
oriented Modeling and Design. Prentice Hall, Englewood Cliffs, New Jersey, 1991.

25. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

26. I. Traore, D. B. Aredo, and K. Stølen. Formal development of open distributed
systems: Towards an integrated framework. In Proc. Workshop on Object-Oriented
Specification Techniques for Distributed Systems and Behaviours (OOSDS’99),
Paris, France, Sept. 1999.

27. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Object Technology Series. Addison-Wesley, 1999.

338

