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Abstract

For the specification and development of large, distrib-
uted, and object-oriented systems, it is often advocated that
individual components should be developed in an aspect-
wise manner, where separate descriptions depict various
roles or viewpoints of the objects considered. The introduc-
tion of such partial specifications requires extra care when
reasoning about systems as several specifications of an ob-
ject may coexist and lead to overlapping information.

In this paper, we consider a compositional approach to
system development by means of partial specifications of
objects. The approach supports stepwise refinement, which
enables global reasoning by local refinement steps in an
aspect-oriented specification style. For this purpose, a re-
finement relation is proposed which is suitable for multiple
inheritance of behavior and component upgrade.

1 Introduction

For the development of complex object-oriented distrib-
uted systems, a formal specification language should sup-
port both compositional and stepwise reasoning. In a com-
positional formalism, the specification of a system can be
obtained from the specifications of its constituent compon-
ents, without knowledge of the interior construction of those
components [27]. Refinement relations ensure the correct-
ness of specification development steps. The two notions
achieve opposite purposes in the sense that refinement rep-
resents a top-down approach to system development and
composition is bottom-up. Whereas refinement adds detail
to specifications in order to make them more precise, com-
position encapsulates internal activity and results in a more
abstract view of the system under development. An ab-
stract specification may be refined by a composition of sev-
eral (more low level) specifications. With a compositional
refinement relation, global reasoning can be performed by
local refinement steps. Compositional refinement properties
have been studied in different formalisms, see e.g. [5, 9, 18].

A new feature in this paper is that compositional refine-
ment properties are studied in a setting where several spe-
cifications of the same object can be given, focusing on dif-
ferent aspects or roles associated with that object. A mul-
tiple viewpoint approach to system development is advoc-
ated for open distributed systems [12] and aspect-oriented
programming [15], and to some extent supported through
e.g. Java interfaces, Corba IDL [19] and UML interfaces
and roles [8], without formalization. To illustrate how com-
positionality and refinement relate to each other in such a
setting, we use a simple object-oriented specification nota-
tion designed to capture exactly these issues.

We consideropendistributed systems where objects run
in parallel, communicate by remote method calls, and ex-
change object identities. For such systems, we do not have
local control of the components. Instead, the behavior of
a component is locally determined by its interaction with
the environment [2]. Thisobservable behaviorof an ob-
ject or component gives us an abstract view of its state,
hiding encapsulated implementation details. The life of an
object up to a point in time is recorded in its trace, i.e. the
finite sequence of observable communication events reflect-
ing remote method calls both to and from the current object.
Trace descriptions of process and data flow networks as well
as modules are known from the literature [9, 11, 14, 17, 22].
The set of traces that reflect possible runs of an object up to
points in time, give us an observational description of that
object and is prefix-closed. Prefix closed trace sets capture
safety properties [3]. For simplicity reasons, liveness is not
considered in this paper.

A safety specification includes an alphabet of commu-
nication events and a prefix closed set of traces over this
alphabet. When an object is specified at a given level of ab-
straction, some lower level details concerning its behavior
are ignored, in order to focus the specification on a relevant
aspect of the behavior of the object. Such details may be a
subset of the methods offered by the object or a subset of
its communication with other objects in itsenvironment. To
capture the dynamic character of open systems, the number
of objects in the environment is (potentially) infinite.
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Multiple viewpoints of an object can result in several
specifications that consider different sets of communication
events. We propose a refinement relation that allows alpha-
bet expansion, i.e. the addition of new events through refine-
ment. Thus, various (partial) specifications of an object may
have a common refinement, although their alphabets differ.
This refinement relation is introduced in the OUN specific-
ation language [10, 20] and has some resemblance to ex-
tensional subtyping [16]. In this paper, we generalize this
refinement relation to the setting of components and allow
the introduction of new objects in a refinement step. We find
that the relation gives us reasoning control over functional-
ity upgrades for components, and reflects the intention of
(multiple) inheritance in object-oriented programming lan-
guages.

A component encapsulates an arbitrary number of ob-
jects. Due to this encapsulation, internal communication is
hidden from an external observer. In order to reason about
viewpoint specifications of components, it is necessary to
consider both observable activity and internal events. We
investigate the interaction between compositionality and re-
finement in this setting. Partial descriptions and object iden-
tities add difficulty to the problem of obtaining composi-
tionality, as the same object identifiers may appear in sev-
eral specifications.

The paper is organized as follows. The next section in-
troduces the trace-based specification notation employed in
the paper. Section 3 introduces a refinement relation which
we find suitable for viewpoint specifications. In Section
4, we show how encapsulation works for the composition
of specifications of single objects and, in Section 5, com-
positional refinement is shown for this case. Then, in Sec-
tions 6 and 7, the formalism is generalized to components
and compositional refinement is shown for component spe-
cifications when some conditions are satisfied. Finally, in
Sections 8 and 9, we motivate our refinement relation by
examples and discuss the proposed solution in relation to
other work. A full version of this paper, with proofs and
additional examples, is available as a research report [13].

2 A Formalism for
Partial Object Specifications

Objects are not static parts of a system, but evolve through
interaction with the environment. One may think of the
current “state” of an object as the result of its past inter-
actions with the objects of the environment by way of re-
mote method calls. Internal activity in an object is reflec-
ted by nondeterminism in its observable activity. Objects
are modeled by the semantic concept of finite communica-
tion traces, known from for example CSP [11], but the com-
munication events are extended with information about the
identities of the sender and receiver of the remote calls.

A communication trace is a finite sequence over an al-
phabet of communication events. LetMtd andObj de-
note types for methods and object identities, respectively.
Say that a methodm is provided by an objecto1 and that
this method ofo1 is called by another objecto2 (ignoring
method parameters). This call is represented by acommu-
nication event, which is a triple〈o2, o1,m〉, whereo1, o2 ∈
Obj andm ∈Mtd. When an object calls methods in itself,
this activity is understood as internal and is as such not re-
flected in the alphabet nor in the traces of the object. In an
observable event〈o2, o1,m〉 we can assume thato1 6= o2.
We denote byαo the set of possible observable communic-
ation events of an objecto, defined as follows:

αo = {〈o2, o1,m〉 |m ∈Mtd ∧ o1, o2 ∈ Obj
∧o ∈ {o1, o2} ∧ o1 6= o2}.

Denote byT o the semantically defined set of traces over
this alphabet which describe all possible executions of the
objecto, soT o ⊆ Seq[αo], where Seq[S] denotes the set of
finite sequences over a setS.

A specification of an object is apartial description of that
object. Thus, we allow several specifications of the same
object. To each specificationΓ of an objecto, we associate
an alphabetα that consists of those communication events
of o that are considered byΓ, soα ⊆ αo, and a trace set
overα. We now define the notion of a specification of a set
of objectsO:

Definition 1 A specificationΓ is a triple 〈O, α, T 〉 where
O is a finite set of object identities,O ⊆ Obj, α is an infin-
ite set of events such that

α ⊆ {〈o1, o2,m〉 ∈
⋃
o∈O

αo | ¬(o1 ∈ O ∧ o2 ∈ O)},

andT is a prefix closed subset ofSeq[α].

We will call O the object set of the specificationΓ, α the
alphabet ofΓ, andT the trace set ofΓ. In shorthand, these
will be referred to asO(Γ), α(Γ), andT (Γ), respectively.

As the trace sets are prefix closed, it follows that we spe-
cify safety properties in the sense of [3]. In the examples,
the trace sets will be given by predicates. A trace set defined
by a predicateP on tracesh : Seq[α] is the largest prefix
closed subset of{h : Seq[α] |P (h)}.

Although the alphabets of specifications are statically
defined, the communication of object identities can still be
modeled by a particular object’s ability to communicate with
another object at a given point in history. This is reflected
in the trace set.

Every specification has acommunication environment,
which is the set of objects involved in communication with
objects of the specification. The communication environ-
ment can be derived from the specification; for a specific-
ation Γ, it is the set{o : Obj | o 6∈ O(Γ) ∧ (〈o, o′,m〉 ∈
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α(Γ) ∨ 〈o′, o,m〉 ∈ α(Γ))}. For opensystems, we do not
control the environment and new objects can appear in the
environment at any time. The communication environment
(and therefore the alphabet) of a specification is infinite.

If the object set of a specificationΓ is singleton, say
O(Γ) = {o}, we call Γ an interfacespecification (of the
object o). In the literature, the soundness of a specifica-
tion Γ of an objecto is given byT o ⊆ T (Γ) (see e.g. [4]).
In our case, we allow partial specifications of objects, so
α(Γ) ⊆ αo. Consequently, the traces must be restricted to
the alphabet considered in the specification, i.e.Γ is a sound
specification ofo if ∀h ∈ Seq[αo] : h ∈ T o ⇒ h/α(Γ) ∈
T (Γ). Soundness for (multi-object) component specifica-
tions is discussed in Section 6.

Trace Notation. Filtering functions on traces are needed.
Let h be a trace andS a set of events. Thenh/S denotes
the trace obtained by deleting all events in the traceh that
are not elements ofS andh\S denotes the trace obtained
by deleting all events that are elements ofS. By extension,
h/o will represent the restriction of a traceh to the set of
events involving an objecto.

Example 1 Consider an (interface) specification Write of
an objecto controlling write access to some shared data,
following [10]. Access is restricted so that only one ob-
ject in the environment may perform write operations at the
time. LetObjects be a subtype ofObj not containingo and
letData be a set of data. The specification only considers
one object, soO(Write) = {o}. There are methods for
writing, opening, and closing write access, which we name
W , OW , andCW , respectively. The write methodW has
a parameter ranging overData. The alphabet1 of Write is
then

α(Write) , {〈x, o,OW 〉, 〈x, o, CW 〉 |x ∈ Objects}
∪{〈x, o,W (d)〉 |x ∈ Objects ∧ d ∈ Data}.

Controlled write access is obtained by restricting the pos-
sible traces of Write. Define the trace set as follows:

T (Write) , {h : Seq[α(Write)] |h prs [[〈x, o,OW 〉
〈x, o,W 〉∗ 〈x, o, CW 〉] • x ∈ Objects]∗}.

Here, the predicateh prs R denotes that the traceh is a pre-
fix of the regular expressionR. We denote byR∗ the repeti-
tion of a regular expressionR and byR1 R2 the sequential
composition of expressionsR1 andR2. Expressions may
be grouped by brackets[. . .]. In addition,• is a binding op-
erator. In this example,x is bound for each traversal of the
loop. In the trace set, the binding operator on calling ob-
jects ensures sequential write access. A caller may perform
multiple write operations once it has access. Note that a set
defined by a predicateh prs R is always prefix closed.

1A call to W (d) can be modeled by two events where only the first
contains the value which is written. This lets us capture asynchrony [20].

3 Refinement

As a specification evolves, details hitherto ignored are
added in order to incorporate postponed design choices in
the specification. We will refer to the process of adding de-
tails concerning behavior to a specification as refinement.
Other details such as refinement of method parameters may
be handled by abstraction functions, which we do not con-
sider here. When the refinement relation is formalized, cri-
teria for a “correct” development process is obtained.

A formal refinement relation usually states that a spe-
cificationΓ′ refines another specificationΓ if Γ′ impliesΓ,
i.e.T (Γ′) ⊆ T (Γ) for trace-based specification languages.
This concept of refinement is found in e.g. Action Systems
[5], CSP [23], FOCUS [9], and TLA [1]. The relation ex-
presses that the concrete specificationΓ′ is more precise
than the abstract specificationΓ. An essential principle
of this kind of refinement is that a trace should have the
same possible extensions in both specifications, i.e. a call to
an object that was considered in the abstract specification
should generate a response from the object in the concrete
specification that was already possible in the abstract one.
With viewpoints, this principle is not satisfactory.

It is natural to perceive viewpoint refinement of interface
specifications as a step towards considering the full beha-
vior of the object. A specification inherits the alphabet and
behavior of its ancestor through refinement, but we will also
allow the addition of new methods and new requirements
(additional behavioral restrictions). In a refinement step, we
then need to expand the alphabet of a specification, but still
restrict its possible behavior (when the new method calls
are ignored). This idea resembles the notion of extension in
behavioral subtyping proposed by [16], when new methods
are not interpreted at the abstract level. For components, we
allow inclusion of new object identifiers in addition to new
methods. We now define refinement.

Definition 2 Let Γ and Γ′ be specifications.Γ′ refinesΓ,
denotedΓ′ v Γ, if 1) O(Γ) ⊆ O(Γ′), 2) α(Γ) ⊆ α(Γ′),
and 3)∀h ∈ T (Γ′) : h/α(Γ) ∈ T (Γ).

Two specifications of the same object identifier can be
refined into a single specification, although the specifica-
tions may have disjoint alphabets. In this way, we obtain
multiple inheritance for specifications. For partial specific-
ations, this is particularly attractive. The approach is well
suited for open distributed systems, where components are
replaced or extended on the fly [20].

The refinement relation given here is a partial order. For
refinement of specifications without alphabet expansion or
object addition, this refinement relation coincides with the
traditional subset-relation and solely restricts the allowed
behavior of the old specification, making the new specific-
ation more deterministic. If new objects are included in a
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refinementΓ′ of Γ, it follows that these objects cannot be in
the communication environment ofΓ. The introduction of
fresh object identifiers, corresponding to thenewcommand
of object-oriented languages, is always allowed.

We illustrate this definition of refinement by two examples.

Example 2 Consider interfaces Read and Read2 for con-
current read access to the shared data resource controlled
by the objecto of Example 1. Read has one methodR
which offersData values to objects in the environment and
a trace setT (Read) = {h: Seq[α(Read)]}. In addition to
R, Read2 uses open_read and close_read operationsOR
andCR and has an alphabet similar to Write. Define the
trace set of Read2 by the predicate

∀x ∈ Object : h/x prs [〈x, o,OR〉 〈x, o,R〉∗ 〈x, o, CR〉]∗.

In Read2, the read operations of a caller must occur between
open_read and close_read operations of that caller. In con-
trast to Write, access here is not restricted to one object at
the time. By quantification, the predicate of the trace set
only considers the behavior of individual objects in the en-
vironment. Finally, Read2 refines Read.

Example 3 Consider the specification RW of an object con-
trolling both read and write access, merging the specifica-
tions Write and Read2. Write access should be exclusive,
but once a caller has obtained read access, several callers are
allowed to perform read operations. The object set of RW is
{o}. The alphabet of RW is obtained from Write and Read2,
soα(RW) , α(Write) ∪ α(Read2). RW lets objects per-
form read operations when granted write access. We here
represent byM any event〈x, y,M〉 whereM ∈ Mtd and
define a predicatePRW1 on tracesh to express admissible
behavior as follows:

PRW1(h) , ∀x ∈ Object :
h/x prs [OW [W |R]∗ CW |OR R∗ CR]∗.

Let ](h) denote the length of a traceh andh/M the re-
striction of a traceh to the set of events{〈o′, o,M〉 | o, o′ ∈
Obj ∧ M ∈ Mtd}. Denote byw(h) , ](h/OW ) −
](h/CW ) and byr(h) , ](h/OR) − ](h/CR). Define
PRW2(h) , (w(h) = 0∨ r(h) = 0)∧w(h) ≤ 1. Now, we
define the trace set of RW as

T (RW ) , {h : Seq[α(RW)] |PRW1(h) ∧ PRW2(h)}.

The specification RW refines both Read and Write from Ex-
ample 1, but it does not refine Read2 from Example 2, as
events reflecting Read operations may occur when read ac-
cess is closed, i.e. when the calling object has write access.

4 Composition of Interface Specifications

Object composition is an abstraction mechanism encap-
sulating two objects, where the communication between the

O1
O2

F

G

Figure 1. Composition of interface specifica-
tions F and G of objects o1 and o2.

objects is consideredinternal to the composition. Internal
communication events are hidden in the alphabet and are
therefore not reflected in the (observable) traces that appear
in the trace set of the composition.

Definition 3 The setI(o1, o2) of internal events of the com-
position of two objectso1 and o2 is the set of all possible
communication events between these objects, defined as

I(o1, o2) , {〈o1, o2,m〉 |m ∈Mtd}
∪{〈o2, o1,m〉 |m ∈Mtd}.

Let Γ and∆ be interface specifications such thatO(Γ) =
{o1} andO(∆) = {o2}. Define the internal eventsI(Γ,∆)
of the composition of the two specifications as

I(Γ,∆) , I(o1, o2).

This definition of internal events is rather strong in the sense
that the set of internal events of two interface specifications
contains events that are internal to theobjectsspecified, but
the events are not necessarily in the alphabet of either of
the specifications. Figure 1 illustrates how each specific-
ation only considers a subset of the alphabet of the object
it describes. Apart from communication with the envir-
onment, there are events between the two objects that are
known to both specifications (solid arrows), to eitherF orG
(stapled arrows), and to neither specification (solid arrows).
All events betweeno1 ando2 are hidden whenF andG are
composed. This definition seems necessary to ensure com-
positional refinement for interface specifications, due to the
possibility of alphabet expansion incorporated in the notion
of refinement. We denote byΓ||∆ the composition that en-
capsulates two specificationsΓ and∆, where the internal
activity is hidden from an external observer.

Definition 4 LetΓ and∆ be interface specifications. Then
Γ||∆ is the specification〈O, α, T 〉 where 1)O , O(Γ) ∪
O(∆), 2) α , (α(Γ) ∪ α(∆)) − I(Γ,∆), and 3)T ,
{h/α |h/α(Γ) ∈ T (Γ) ∧ h/α(∆) ∈ T (∆)}.
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Objects are modeled using traces of structured commu-
nication events including information on both the sender
and receiver of a method call. The internal activity of an
object is assumed not to be observable, so it does not ap-
pear in the traces of the object. Due to object identity, the
following property then holds:

Property 5 Γ||Γ = Γ, for any interface specificationΓ.

In contrast, this is not the case for process languages without
object identity, where a method call to the parallel composi-
tion of two identical processes would yield execution of the
method in both copies of the process [11].

The composition of an interface specification with it-
self might seem contradictory to the idea of object com-
position. However, with multiple inheritance and aspect-
oriented paradigms like ours, there may be several (partial)
specifications of an object identifier. However, the compos-
ition of two interface specifications of the same object is
the weakest refinement of both specifications, assembling
different roles of the object into a whole.

Lemma 6 Let Γ1, Γ2 be interface specifications of some
objecto. ThenΓ1||Γ2 v Γ1 and Γ1||Γ2 v Γ2. For all
specifications∆, if ∆ v Γ1 and∆ v Γ2, then∆ v Γ1||Γ2.

Compositional Refinement of Interface Specifications.
As a first approach to compositional refinement in the set-
ting of aspect-oriented specifications, consider the compos-
ition of two interface specifications. This case is simpler
than compositional refinement of component specifications
because there is no hiding of internal events in either spe-
cification. In a composition of interface specifications, we
want to refine one of the specifications and reason about its
behavior in a context, relative to the behavior of the original
specification in the same context.

Theorem 7 Let Γ andΓ′ be interface specifications of an
objecto1 and let∆ be an interface specification of an object
o2. ThenΓ′ v Γ⇒ (Γ′||∆) v (Γ||∆).

5 Components

A component encapsulates an arbitrary number of ob-
jects, hiding implementation details. In terms of observable
behavior, encapsulation hides internal communication. Se-
mantically, the alphabets and trace sets of the objects are
given and unique. From these, we construct the alphabet
and trace set of components. The objects of a component
are explicit; we represent a componentC that encapsulates
a set of objects{o1, . . . , on} simply by that set of objects.
The notion of internal events is extended to components.

Definition 8 The internal events of a setS of objects are
defined by the pairwise union of the internal events of the
objects in the set,I(S) ,

⋃
o,o′∈S I(o, o′).

A component encapsulates its objects directly, without
internal structure, i.e. it does not encapsulate “smaller” com-
ponents. The alphabet and trace set of a component are con-
structed from the alphabets and trace sets of its objects.

Definition 9 LetC be a component, encapsulating a set of
objects{o1, . . . , on}. Define the set of possible observable
communication eventsαC ofC byαC ,

⋃
o∈C α

o−I(C).
Leth ∈ Seq[

⋃
o∈C α

o]. The trace setT C ofCdescribes all
possible executions of the component, defined as

T C , {h/αC |
∧

o∈O(C)

h/αo ∈ T o}.

Component composition becomes the union operation on
sets, and is obviously commutative and associative. Due
to object uniqueness, components are compositional in the
sense that we can deriveαC1∪C2 andT C1∪C2 directly from
the alphabets and trace sets ofC1 andC2.

6 Component Specifications

In this section, we consider the specification of (multi-
object) components. In an aspect-oriented setting, we must
assume that there are overlapping occurrences of the same
object identifier in different specifications. Composition in
this case is non-trivial and its properties must be examined.

A component specification describes a service provided
by the component to its environment in terms of observable
behavior. Although we do not know the details of how this
service is implemented, we can construct the component’s
maximal set of internal events as we know its object set.
However, an event that is internal in one specificationΓ may
be in the alphabet of another specification∆. Were we to
composeΓ and∆, the visible behavior of∆ could restrict
the (possible) internal behavior ofΓ.

Definition 10 (Composability) Two component specifica-
tionsΓ and∆ are composableif and only if

α(Γ) ∩ I(O(∆)) = ∅ ∧ I(O(Γ)) ∩ α(∆) = ∅.

For two composable component specifications it is possible
to determine whether their composition is “meaningful” by
considering the observable communication traces of the two
specifications. Most often, only a subset of the internal
events actually take part in this activity, so composability
will generally be a too restrictive condition for the compos-
ition rule. However, the criterion is statically determinable.

Boiten et al have a related notion [7]. In their work, two
specifications are calledconsistentif they have a common
refinement. The (least) common refinement is obtained by
unification of the specifications. As the trace sets in our
formalism are prefix closed, two specifications always have
a common refinement, with a trace set including the empty
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trace. In our setting, (non-trivial) consistency cannot be de-
termined by external observation unless the specifications
are composable.

Definition 11 LetΓ and∆ be composable component spe-
cifications. ThenΓ||∆ is the specification〈O, α, T 〉 where
1)O , O(Γ) ∪ O(∆), 2)α , α(Γ) ∪ α(∆) − I(O), and
3) T , {h/α |h/α(Γ) ∈ T (Γ) ∧ h/α(∆) ∈ T (∆)}.
The following properties are due to composability.

Property 12 The composition of specifications is commut-
ative and associative.

Soundness for specifications in general is understood as an
extension to the notion of soundness for interface specific-
ations in Section 2, relating the traces of components to
those of component specifications. A naive generalization
of Lemma 6 is not straightforward, as hiding of internal
events implies thatα(Γ) 6⊆ α(Γ||∆) for specificationsΓ
and∆. However, the following lemma ensures soundness
for the composition of specifications of a given component.

Lemma 13 Composition preserves soundness, i.e. ifΓ and
∆ are sound specifications of a given componentC, then
Γ||∆ is a sound specification ofC.

The refinement of component specifications differs from
the special case of interface specifications previously con-
sidered. For the refinementΓ′ of a component specification
Γ, we are allowed to introduce new objects, so we cannot
expectI(Γ) = I(Γ′) to hold. In order to obtain reasoning
control over the refinement of component specifications, we
need one further restriction, motivated as follows: Consider
the composition of two specificationsΓ and∆. Say that
Γ′ is a refinement ofΓ, andΓ′ includes an event that is in
the alphabet of∆ and therefore visible in the composition
Γ||∆. Then this event should also be visible inΓ′||∆. This
might occur due to the possible inclusion of new objects in
the refinement ofΓ. No restriction is needed for the inclu-
sion of new methods for objects that already occur inΓ.

Definition 14 (Propriety) Let Γ, Γ′ and ∆ be component
specifications such thatΓ′ v Γ. Let α′ denote the set of
events that involve objects ofΓ′ but not ofΓ, so

α′ , {〈o1, o2,m〉 | (o1 ∈ O(Γ′) ∨ o2 ∈ O(Γ′))
∧o1 6∈ O(Γ) ∧ o2 6∈ O(Γ)}.

ThenΓ′ is a proper refinement ofΓ with respect to∆ if
α′ ∩ α(∆) = ∅.
This indicates that new objects can be included inΓ only if
these are not in the communication environment of∆. We
can interpret the propriety criterion as an interdiction to re-
duce the communication environment of a composition of
component specifications when we refine one of them. For
specifications satisfying the propriety criterion, the follow-
ing lemma holds.

Lemma 15 LetΓ′ and∆ be composable specifications and
let Γ′ be a proper refinement of a specificationΓ with re-
spect to∆. Then(α(Γ)∪α(∆))∩I(O(Γ′ ||∆)) = (α(Γ)∪
α(∆)) ∩ I(O(Γ||∆)).

From this lemma, we infer compositional refinement when
propriety and composability are assumed.

Theorem 16 Let Γ, Γ′ and∆ be component specifications
such that 1)Γ′ is a proper refinement ofΓ with respect to∆
and 2)Γ′ and∆ are composable. ThenΓ′||∆ v Γ||∆.

Remark that if no new object identifiers are introduced in
a refinement step, propriety and composability are always
preserved by refinement.

7 Examples

We illustrate by examples some issues concerning com-
position and refinement in our formalism. For simplicity,
only interface specifications are considered here. Using pro-
jection, we avoid some difficulties related to composing spe-
cifications at different levels of abstraction (Example 4).
However, this flexibility lets us introduce new deadlock situ-
ations in a refinement step (Example 5).

Example 4 Let WriteAcc modify Write of Example 1, so
that only the objectc makes calls to the methods ofo, the
object specified by WriteAcc. (This is done by modifying
the predicate of the trace set, so WriteAcc refines Write.)
We now specify by Client a write client making calls to
the write access controllero. The Client objectc calls the
write method ofo and then confirms these calls to a mon-
itor objecto′ in its environment. Client has the object set
O(Client) = {c} and the alphabet:

α(Client) , {〈c, x,W (d)〉 |x ∈ Objects, d ∈ Data}
∪ {〈c, x,OK〉 |x ∈ Objects}.

Let Reg be a regular expression which ignores the written
data values, soReg = 〈c, o,W (_)〉 〈c, o′, OK〉. The trace
set of Client is

T (Client) , {h ∈ Seq[α(Client)] |h prs Reg∗}.

Now compose Client with WriteAcc. Without projection,
this composition results in an immediate deadlock as OW
is not in the alphabet of Client, soT (Client||WriteAcc)
would only include the empty trace. With projection, this is
not the case. Lett ∈ Seq[α(Client)∪α(WriteAcc)] satisfy
t prs [〈c, o, OW 〉 Reg 〈c, o, CW 〉]∗. Thent/α(Client) ∈
T (Client) andt/α(WriteAcc) ∈ T (WriteAcc). There-
fore, when internal events are hidden in the composition,
we only see calls too′:

T (Client||WriteAcc) =
{h : Seq[α(Client||WriteAcc) |h prs 〈c, o′, OK〉∗}.
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In Example 4, we show how specifications at different
levels of abstraction can be composed without necessarily
causing deadlock. Without the use of projection, the com-
position of Client and WriteAcc would yield a deadlock. In
that case, we could refine Client into a specification Client′,
includeOW andCW operations at appropriate places in
the traces, and thus remove the deadlock through refine-
ment: observable events would start to appear in the com-
position of Client′ and WriteAcc. This is clearly undesir-
able. Using projection as we do, Client appears as more
abstract than Client′ and WriteAcc because it ignores cer-
tain communication details. We can still compose the spe-
cifications and Client′||WriteAcc has the same trace set as
Client||WriteAcc in our formalism.

However, the use of projection does not exclude dead-
lock. In Example 5, we show how deadlock can be intro-
duced in a refinement step.

Example 5 Let Client2 refine Client, with the same object
set. Introduce the methodOW of the objecto in the spe-
cification, soα(Client2) becomes{〈c, o, OW 〉}∪α(Client).
In the trace set of Client2, we let theOW event appear after
write eventsW , i.e. in the opposite order of how they appear
in WriteAcc, so the trace set of Client2 is defined by

T (Client2) ,
{h ∈ Seq[α(Client2)] |h prs [Reg 〈c, o, OW 〉]∗}.

The trace set of Client2||WriteAcc only contains the empty
trace, as the first event in a trace of WriteAcc is〈c, o, OW 〉,
whereas for a trace of Client2, it is〈c, o,W (d)〉. Hence,
Client2||WriteAcc trivially refines Client||WriteAcc.

8 Discussion

We have proposed a formalism supporting partial spe-
cifications of objects with identity, and proven a compos-
itional refinement property for this formalism. Arguments
for aspect-oriented system design can be found in the lit-
erature [7, 12, 15]. Aspect-oriented specification has been
studied in the context of multi-paradigm specification tech-
niques, where it is assumed that the different notations can
be translated into a common (state-based) framework [6,
7, 26]. In these approaches, emphasis is on composition
without hiding, i.e. on unifying the specifications in a (suf-
ficiently large) state space.

For open distributed systems, we prefer to think of ob-
jects and components as black boxes, where implementa-
tion details are unavailable for reasoning. Hence, we use
a trace-based approach where composition hides internal
activity in the tradition of process languages like CSP [11]
and FOCUS [9]. However, we use explicit object identit-
ies in the communication traces, rather than communication

channels, and thereby avoid inherent difficulties of channel-
based approaches [24, 25]. The formalism we propose is
compositional, as it suffices to consider externally available
information of specifications in order to reason about com-
position and refinement. (Internal events are not known, but
we construct the worst-case scenario from the available ob-
ject identities.) The formalism is augmented with further
syntactic coating in the specification language OUN [20].

Traditionally, refinement relations compare specifications
with fixed alphabets [1, 5, 9, 23], although some approaches
propose to decompose events, with mappings between dif-
ferent alphabets [16]. In an aspect-oriented setting, there
are good reasons to allow alphabet expansion in refinement
steps. It gives us multiple inheritance of behavior: two spe-
cifications can have a common refinement. Also, we cap-
ture component upgrade by addition of new functionality,
in a manner which resembles subclassing in object-oriented
languages. Traditional refinement appears as a special case.

Compositional refinement in a framework for partial spe-
cifications seems novel to this paper. Partiality and object
identity add difficulty to the problem, as events related to
one specification may be included in the alphabet of another
through refinement. The framework for partial specifica-
tions used in this paper, has been encoded in the Prototype
Verification System (PVS) [21] and compositional refine-
ment (Theorem 16) and related properties have been veri-
fied in the PVS theorem prover. For concrete specifications,
we find that trace sets are specified by means of predicates,
so proof of correct development steps are most often dis-
charged by the theorem prover in a straightforward manner.

For simplicity, liveness has not been considered in this
paper. In future work, we would like to examine how spe-
cifications with liveness properties would behave in our set-
ting. As demonstrated by the examples of Section 7, our use
of projection offers a certain flexibility which lets us avoid
some deadlock situations in composition, but it also lets us
introduce potential deadlock situations in refinement steps.
Liveness reasoning in this setting will therefore lead to an
interesting extension of the results presented in this paper.

9 Conclusion

Object-orientation and multiple viewpoints are often re-
commended for the development of open distributed sys-
tems. In this paper, we consider the composition and refine-
ment of partial specifications of object-oriented compon-
ents. For this purpose, a formalism for object-oriented spe-
cifications is introduced, based on finite traces of commu-
nication events reflecting remote method calls between ob-
ject identifiers. Partial specifications represent viewpoints
or aspects of objects.

We propose a composition rule encapsulating objects and
a refinement relation which allows alphabet expansion and
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introduction of new objects in a refinement step. In this
formalism, we study compositional refinement properties
for partial specifications of object identifiers. Several spe-
cifications may describe the same object.

Compositional refinement properties have previously been
studied in the literature, but formalisms supporting multiple
viewpoints have not received much attention. The paper
demonstrates how an aspect-oriented specification style and
explicit object identities lead to additional difficulties and
suggests a solution with sufficient conditions to obtain com-
positional refinement in this setting. If we accept these re-
strictions, we get an aspect-oriented specification notation
which supports stepwise refinement of component specific-
ations, using the proposed refinement relation. The notation
can be extended with a syntactic coating to provide an easy-
to-use specification language for behavioral interfaces.

The paper demonstrates how an aspect-oriented approach
to object-oriented system development necessitates extra cau-
tion due to explicit object identities and encapsulation. Nev-
ertheless, we think the approach seems promising for the
development of open distributed systems, with its focus on
the specification of system services by observable behavior.
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