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Abstract Aspect-oriented approaches have recently been proposed to address the problem
of specifying dynamic object-based systems, by depicting the various roles of
the objects separately. In this paper, we consider an approach based on the
observable behavior of objects and propose a specification formalism for reusable
object interfaces with input/output-driven assumption-guarantee predicates. The
formalism supports compositional reasoning and exchange of object identities
between objects in an environment where the number of objects is unbounded.
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Introduction

To facilitate the modeling process of complex open object-based distrib-
uted systems, we are encouraged to separate different concerns into various
viewpoints, or aspects, by the RM-ODP [13]. This paper introduces an object-
oriented specification formalism centered around this idea. The formalism
considers objects running in parallel and communicating asynchronously, and
it directly supports main object-oriented concepts such as object identity and
multiple inheritance. Interfaces and classes are organized in distinct inheritance
hierarchies to separate reuse and design of behavior from that of code. Such
a distinction is also found in languages like Java, and is enforced by the COM
architecture [11]. In this paper, the usual syntactic information of interface de-
clarations is extended with behavioral constraints. Thus, interfaces are carriers
of semantic requirements to be respected by the classes that implement them.

In open systems, components can be supplied by different manufacturers at
different times. Therefore, we do not assume knowledge of implementation
details concerning objects in the environment. Instead, an object’s behavior is
locally determined by its interaction with the environment [2]. For this reason,
we prefer an approach to system development based on theobservable behavior
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of objects, rather than on internal states and state transitions as encountered in
work based on formalisms such as Object-Z [23, 8] and timed automata [7].

Message-based process algebras such as CSP [12], theπ-calculus [17], and
FOCUS [9] do not have object identity, which makes viewpoint modeling of dis-
tributed systems difficult. Formal object-based approaches to message-based
concurrency modeling, such as Actors [2] and Maude [10], are not oriented
towards stepwise development and viewpoints, lacking notions of composition
and refinement of specifications. Industrial development languages such as
UML [19] and OCL [25] support viewpoint specification, but lack formal no-
tions of composition and refinement and are less suitable for rigorous reasoning.

In the proposed formalism, objects are specified by interaction sequences
of remote method calls both to and from the object, so we modelactive as
well as passive objects. By composing viewpoints to different objects, we
specify services cross-cutting the system architecture, resembling aspects in
aspect-oriented programming [16]. Our work is related to other approaches
to viewpoints in message-passing systems, e.g. [4, 18, 24], but our emphasis
is on formal development of viewpoint specifications in the setting of open
distributed systems. A refinement relation is proposed for viewpoints, which
allows openness by service upgrades and restructuring.

In order to focus on ease-of-use, a schematic presentation of specifications is
proposed by means of interface declarations with both syntactic and semantic
information. We think of interfaces asgeneric object viewpoints. An object
can offer several interfaces and an interface can be offered by several objects.
Objects are always considered through the interfaces they offer. Hence, for
specification purposes, we deal with interfaces that correspond to object view-
points, rather than complete specifications. New objects may be created at any
time, and object identities can be transmitted between objects. Old objects
may offer new interfaces and an object that offers an interfaceI also offers all
interfaces refined byI. In interface declarations, behavioral requirements are
written in a rely-guarantee style [15], in a novel input/output-driven manner.
The separation of interfaces and classes give us static correctness proofs. The
specification formalism has been encoded into the PVS proof system [21], to
provide a machine-assisted proof environment for the formalism [14].

Behavioral interfaces lets us capture certain forms of openness by textual ana-
lysis. Reasoning is both compositional and incremental, so software units can
be written, formally analyzed, and modified independently, at different times
and locations, while we have control of maintenance of earlier proven results.
In this paper, only refinement and composition of viewpoint specifications are
considered, ignoring implementation issues. In accordance with the idea of
observability, we focus on safety specifications, in the sense of Alpern and
Schneider [3], by means of prefix-closed sets of finite communication traces.
These are described by trace patterns in a graphical specification style.
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1. A Formalism for Partial Object Specifications

Objects are not static parts of a system, they evolve through interaction with
the environment. One may think of the current “state” of an object as the result
of its past interactions with the environment by way of messages or method calls.
Objects are modeled by finite communication traces, known from e.g. CSP [12],
but our communication events include information about theidentitiesof the
sender and receiver of calls.

A communication trace is a sequence over an alphabet of events reflecting
remote method calls between objects. LetMtdandObj be fixed sets of methods
and object identities, respectively. Say that a methodm is offered by an object
o1 and that this method is called byo2. This call is represented by a triple
〈o2, o1,m〉 whereo1, o2 ∈ Obj andm ∈ Mtd. For simplicity, we ignore
additional event information until Section 2.1.

The triple is said toinvolve the objectso1 and o2. Calls by an object to
methods in itself are internal and are not reflected in the alphabet nor in the
observable traces of the object.

A specification of an object is apartial description of that object. Thus,
we allow several specifications of the same object. To each specificationΓ of
an objecto, we associate an alphabetα that consists of those communication
events ofo that are considered byΓ and a trace set overα. A specification of
a component describes a system service by combining viewpoints of different
objects. Specifications have unboundedcommunication environments, consist-
ing of external objects involved in communication with the objects specified.
Thus, new objects can always appear in the environment. Environments are
modeled by infinite sets of object identifiers.

Definition 1 A specificationΓ is a quadruple〈O, α,T , E〉 where (1)O and
E are disjoint sets of object identities,O, E ⊆ Obj, (2) α is a set of events
〈o1, o2,m〉 such thatm ∈ Mtd and each event involves an object inO and
another inE , and (3)T is a prefix-closed subset ofα∗.

S∗ denotes the finite traces over a setS. We callO the object setof the
specificationΓ, α thealphabetof Γ, T thetrace setof Γ, andE thecommunic-
ation environmentof Γ. These are referred to asO(Γ), α(Γ), T (Γ), andE(Γ),
respectively. Although the alphabets of specifications are statically defined,
communication of object identities can still be modeled by a particular object’s
ability to communicate with another object at a specific point in history.

If the object set of a specificationΓ is singleton, we callΓ an interface
specification ofo. In the literature, soundness for a singleton specificationΓ
of an objecto is usually given byT o ⊆ T (Γ), whereT o is the trace set of
o [5]. With partial specifications, we restrict the traces to the alphabet of the
specification, soΓ is asoundspecification ofo if ∀h ∈ T o : h/α(Γ) ∈ T (Γ).
Soundness properties are discussed in Section 1.2.
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Trace Notation. Let h be a trace andS a set of events. Thenh/S denotes
the trace obtained by deleting all events in the traceh that are not elements
of S andh\S denotes the trace obtained by deleting the elements inS. By
extension,h/o will represent the restriction ofh to the set of events involving
an objecto. We will often use trace patterns in our specifications, mimicking a
graphical specification style. Leth prp P denote that the traceh is a prefix of
the patternP , i.e. that there is an extension toh described byP . Patterns are
regular expressions extended with a binding operator and pattern matching.

Example 1 Consider interface specificationsRead, Write, andReadWrite,
of an objecto controlling read and write access to some shared data. Concurrent
read access is allowed, whereas write access is restricted to one object of the
environment (E) at the time. Forwrite control, there are methods for writing
as well as for opening and closing write access, which we name W, OW and
CW, respectively, where W has a parameter ranging overData. An interface
specification,Write, of an objecto controlling write access has the alphabet

α(Write) , {〈x, o,OW 〉, 〈x, o,CW 〉, 〈x, o,W (d)〉 |x ∈ E ∧ d ∈ Data}.

A write-cycle can be specified by the pattern

Wcycle, [〈x, o,OW 〉 〈x, o,W 〉∗ 〈x, o,CW 〉 • x ∈ E ].

We then define the trace set ofWrite by

T (Write) , {h : α(Write)∗ |h prp Wcycle∗}.

Sequential write access is enforced by the binding operator• of Wcycle, ex-
pressing that the calling object is fixed for each repetition of the pattern. Sim-
ilarly, read controlcan be specified over the alphabet given by methods R, OR
and CR; and a read-cycle may be specified by the pattern

Rcycle , [〈x, o,OR〉 〈x, o,R〉∗ 〈x, o,CR〉 • x ∈ E ].

The trace set of the specificationRead (of objecto) can be given by

T (Read) , {h : α(Read)∗ | ∀x : E • h/x prp Rcycle∗}

where concurrent and overlapping read cycles are allowed (due to the projection
to everyx). Alternatively, we could define the trace set byh prp MultiRcycle∗

where the patternMultiRcycleis specified as the interleaving of Rcycles:

∀x : E •MultiRcycle/x = Rcycle∗.

An objecto controlling both read and write accessmay be specified by the
alphabetα(ReadWrite) , α(Read) ∪ α(Write)) and the trace set

T (ReadWrite) , {h : α(ReadWrite)∗ |h prp [Wcycle|MultiRcycle]∗}.
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1.1 Refinement

Refinement notions capture the correct evolution of specifications. Usually,
a formal refinement relation states that a specificationΓ′ refines another spe-
cification Γ if Γ′ implies Γ, which becomesT (Γ′) ⊆ T (Γ) for trace-based
formalisms. This concept of refinement is found in e.g. Action Systems [6],
CSP [22], FOCUS [9], and TLA [1]. An essential principle here is that possible
behavior is restricted by refinement. We do not find this principle satisfactory
for partial specifications. Instead, we want to consider more as we approach
implementation. Consequently, behavior should be expanded by refinement in
this setting. For open and object-based systems, such refinement can be under-
stood in terms ofsubstitutability, when components are replaced or extended
on the fly. Thus, component refinement corresponds to a controlled form of
component upgrade, allowing new functionality to be added to system services.
For this purpose, we use refinement with projection.

Definition 2 A specificationΓ′ refines another specificationΓ, denotedΓ′ v Γ,
if (1) O(Γ) ⊆ O(Γ′), (2)α(Γ) ⊆ α(Γ′), (3) E(Γ) ⊆ E(Γ′), and
(4) ∀h ∈ T (Γ′) : h/α(Γ) ∈ T (Γ).

This relation is a partial order. Without alphabet expansion or object addition,
the relation coincides with the traditional subset-relation and solely restricts the
allowed behavior of the old specification. For partial specifications however,
our refinement relation has an additional asset: As the alphabet of a specification
may be expanded through refinement, a specification may refine several other
specifications. For component specifications (see Section 1.2), new object
identifiers may also be introduced.

Example 2 Reconsider Example 1. We clearly have thatReadWrite refines
bothRead andWrite. If we extend the alphabet ofWritewith a read operation
(R), the trace set can be defined by the prefix closure of repeated W+cycles:

W+cycle, [〈x, o,OW 〉 [〈x, o,W 〉 | 〈x, o,R〉]∗ 〈x, o,CW 〉 • x ∈ E ].

The resulting specification,Write+, refinesWrite. However, the similarly
extendedReadWrite specification would neither refineRead (since R events
now are allowed outside Rcycles) norWrite+ (since R events are allowed
outside W+cycles), but it would refineWrite.

1.2 Specifying Components

Let acomponentencapsulate an arbitrary number of objects, so that details
regarding the implementation of the component are abstracted away, hiding
internal activity. The objects of a component are explicit; we represent a com-
ponent by the set of objects it encapsulates.
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Definition 3 The internal events of a setS of objects are the set of all possible
communication events between objects of the set:

I(S) , {〈o1, o2,m〉 | o1 ∈ S ∧ o2 ∈ S ∧m ∈Mtd}.

Given alphabets and trace sets for the objects of a component, the alphabet
and trace set of the component are constructed directly.

Definition 4 Let C be a component, encapsulating a setS = {o1, . . . , on}.
Define the alphabetαC ofC byαC ,

⋃
o∈S α

o − I(S). Leth ∈
(⋃

o∈S α
o
)∗

.
Then the trace set ofC is defined asT C , {h/αC |

∧
o∈S h/α

o ∈ T o}.

Component composition becomes the union operation on sets, and is obviously
commutative and associative. Due to object uniqueness, components are com-
positional in the sense that we can deriveαC1∪C2 andT C1∪C2 directly from the
alphabets and trace sets ofC1 andC2.

A component specificationcan have a non-singleton object set. With partial
specifications, the same object identifiers may be part of several specifications
and an event that is internal in one specification may be observable in another.
Composition in this case is non-trivial and its properties must be examined.

Definition 5 (Composability) Twocomponent specificationsΓ and∆ arecom-
posableif and only ifα(Γ) ∩ I(O(∆)) = ∅ andI(O(Γ)) ∩ α(∆) = ∅.

For twocomposable component specifications it is possible todetermine whether
their composition is “meaningful” by considering the observable communica-
tion traces of the two specifications. Often, we can verify the simpler conditions
O(Γ) ∩ E(∆) = ∅ andO(∆) ∩ E(Γ) = ∅ instead, which entail composability.

A related notion is found in [8]: two specifications areconsistentif they
have a common refinement. The (least) common refinement is obtained by
unification of the two specifications. However, as the trace sets of our formalism
are prefix-closed, two specifications always have a common refinement.

Definition 6 LetΓ and∆ be composable component specifications. ThenΓ||∆
is a specification〈O, α,T , E〉, where (1)O , O(Γ) ∪O(∆), (2)α , α(Γ) ∪
α(∆) − I(O), (3) T , {h/α|h ∈ (α(Γ) ∪ α(∆))∗ ∧ h/α(Γ) ∈ T (Γ) ∧
h/α(∆) ∈ T (∆)}, and (4)E , E(Γ) ∪ E(∆).

Composition is commutative and associative. Due to hiding of internal events,
a proof for a naive formulation of soundness for the composition rule is not
straightforward. However, the following lemma ensures soundness for the
composition of specifications of a given component.

Lemma 1 Composition preserves soundness, i.e. ifΓ and ∆ are sound spe-
cifications of a componentC, thenΓ||∆ is a sound specification ofC.
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To obtain reasoning control over the refinement of component specifications,
we need another restriction, motivated as follows: Say thatΓ′ is a refinement
of Γ, andΓ′ includes an event that is in the alphabet of a third specification∆
such that this event is visible in the compositionΓ||∆. Then this event should
also be visible inΓ′||∆. Such events may be introduced by the inclusion of
new objects in the refinement. No restriction is needed when old objects are
extended with new methods.

Definition 7 (Properness) LetΓ, Γ′ and∆ be specifications such thatΓ′ v Γ.
Letα′ denote the set of events involving objects ofΓ′ that do not involve any
objects ofΓ, so

α′ , {〈o1, o2,m〉 | (o1 ∈ O(Γ′) ∨ o2 ∈ O(Γ′)) ∧ o1 6∈ O(Γ) ∧ o2 6∈ O(Γ)}.

ThenΓ′ is a proper refinement ofΓ with respect to∆ if α′ ∩ α(∆) = ∅.
For most practical cases, we can verify that new object identifiers are fresh,
i.e. (O(Γ′)−O(Γ)) ∩ E(∆) = ∅, which entails properness. For specifications
satisfying the composability and properness criteria, we infer a compositional
refinement property.

Theorem 1 LetΓ, Γ′ and∆ be component specifications such thatΓ′ is aproper
refinement ofΓ with respect to∆ and assume thatΓ′ and∆ are composable.
ThenΓ′||∆ v Γ||∆.

2. Generic Object Viewpoints

In this section, we present a high-level syntax for interface declarations for
asynchronously communicating objects. Interfaces are separated from the ob-
jects that implement them to focus on behavioral reusability. The syntax here is
a subset of a richer language which also includes contracts between objects and
class definitions [20]. The language is strongly typed, and objects are typed by
interfaces that correspond to different viewpoints. Objects typed by the same
interfaces can be used in the same places. An object offers an interface to its
environment when its class implements that interface. An object offering an
interfaceF can be used in place of an object offering asuperinterfaceof F .
This substitutability requires a rigorous definition of interface inheritance.

2.1 Asynchronous Communication

In distributed systems, communication between objects is typically asyn-
chronous. In the traces of the communication model, each remote method call
is represented by two distinct events, which we refer to as the initiation and
the completion of the call, respectively. Each event contains information about
input or output values, a tag for initiation or completion, identities of the send-
ing and receiving objects, and a method name. (It is necessary to restrict the
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traces of Section 1 to a subtype which ensures that initiations and completions
are matched correctly [14].) An operation is declared (in an interface) as

opr m(in p1:T1, . . . , pi:Ti out pi+1:Ti+1, . . . , pj:Tj)

where the keywordsin andout initiate (optional) input and output parameter
lists (andin is default). Say that an objecto1 offers this method to its en-
vironment, and that the method is invoked by another objecto2. This re-
mote call is first reflected in the traces by an initiation event, represented as
o2→o1.m(p1, . . . , pi). If a response is returned too2, this is reflected by a
completion event in the traces, denotedo2←o1.m(p1, . . . , pi; pj, . . . , pn). This
graphical notation is used for readability instead of the triples of Section 1.
The semicolon separates input and output values. For methods without explicit
output values, there is simply no semicolon nor values after it. We refer to
o2 as the caller and too1 as the receiver of both eventso2→o1.m(. . .) and
o2←o1.m(. . .), wherem ∈Mtd.

Global traces are communication histories for an entire system or sub-system,
whereas local traces describe the histories restricted to a subset of the commu-
nication events for one object or component. Asynchronous communication
means that the calling object need not wait for the completion of a call; in the
(local) traces, other communication events may occur between the initiation
and completion events of a particular call. Synchronous communication can be
captured in this model by disallowing such intermediary events.

2.2 High-level Interfaces

An interface contains syntactic definitions of operations and behavioral con-
straints, appearing as an assumption-guarantee specification [15]. The assump-
tion is a requirement on the behavior of the objects in the communication envir-
onment. As customary in the assumption-guarantee paradigm, the guaranteed
invariant need only hold when the assumption is respected by the environment.
However, in our setting, the paradigm is extended to deal with input and output
aspects of communicating systems. The semantic requirements of an interface
rely on the available communication history up to present time of an object
offering the interface, i.e. they are predicates on the finite traces. An interface
declaration has the following general form:

interfaceF [〈type parameters〉] (〈context parameters〉)
inherits F1, F2, . . . , Fm

begin
with G

opr m1(. . .)
...

opr mn(. . .)
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asm<formula on local trace restricted to one calling object>
inv <formula on local trace>

where<auxiliary function definitions>
end

whereF,F1, . . . , Fm, andG are interfaces. Type parameters (square brackets)
are data types or interfaces. Context parameters (ordinary brackets) are values
(typed by data types) and objects parameters (typed by interfaces) and describe
the minimal environment that any object offering the interface needs at the
point of creation. Type parameterized interfaces appear as interface templates.
We now consider interfaces where both type and context parameters are fixed.
These interfaces describe viewpoints to objects.

For active objects, we may want to restrict access to calling objects of a par-
ticular interface. This way, the current object can invoke methods of the caller
and not only passively complete invocations of its own methods. Use of the
with clause restricts the communication environment of an object (considered
through the interface) to external objects offering a given interface. For passive
objects, no such knowledge is required and thewith clause is omitted. The
interface declared in thewith clause is called acointerface. Mutual depend-
ency is specified if two interfaces have each other as cointerface. Remark that
the inherits clause as well as thewith clause indicate an ordering of interface
declarations.

Denote byo:F an objectowhich offers an interfaceF (as above, but for given
parameters). Foro:F , we can derive an alphabetα(o:F ) of communication
events from the declaration ofF . To each method, we associate initiation and
completion events, varying over possible input and output values and possible
calling objects. The alphabet ofo:F is the set of events of the formo′→o.m(...)
ando′←o.m(...) whereo′ is an object in the enviroment andm is a method
declared inF (or a superinterface ofF ), as well aso→o′.m(...) ando←o′.m(...)
wherem is a method declared in some interfaceF ′, which is a formal parameter
toF , a cointerface ofF , or a cointerface to a superinterface ofF . An invocation
of a methodm in an objecto′ by another objecto is type correct ifo′ has a (super)
interface declaringm (with matching type parameters) and with a cointerface
(if present) which is a (super) interface ofo.

The alphabet ofo:F is defined as maximal, considering all potentially ex-
ternal objects. In reality, the communication environment of an object evolves
over time, due to information about calling objects and object identifiers trans-
mitted as method parameters. To capture this evolution is part of the task of
specifying the acceptable communication traces.

The assumption is a predicate on traces and object identifiers, declared fol-
lowing theasm keyword. The assumption is a pointwise requirement on the
environment, i.e. it is expected tohold for the local traces restricted to a particular
object at a time. Hence, in interface declarations, the assumption predicate var-
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ies over traces as well as over calling and current objects. (An object identifier
offering the interface is understood as the current object.) Since assumptions
are the responsibility of the environment, these are only expected to hold at
points in the traces that end with input to the objecto considered.

Inputs to an objecto are eventso′→o.m(. . .) ando←o′.m(. . .), reflecting
initiations of calls to methods ofo and answers to calls byo to methods of
other objects. Outputs are eventso′←o.m(. . .) ando→o′.m(. . .), reflecting
completions of calls to methods ofo and initiations of calls byo to methods of
other objects. Letino(h) denote the longest prefix ofh ending with input to
o. Similarly defineouto(h) for output. Given an assumption predicateA in an
interface declaration ofF , we define a predicateAin by

Ain(h, o) = ∀x ∈ E : A(ino(h/x), o, x) for h ∈ α(o:F )∗,

and a similar predicateAout(h, o), hiding inputs too by the functionouto(h).
In interface declarations, we expectAin(h, o) to hold for each object in the
environment. The invariantI is a predicate on traces, declared following the
inv keyword. We define

Iout(h, o) = I(outo(h/α(o:F ))) for h ∈ α(o:F )∗.

The invariant of a specification is guaranteed to hold for the object offering
the interface, so it is a predicate on the entire (local) trace. Hence, by an
invariant I declared in an interface, we expectIout(h, o) to hold. Omitted
predicate declarations are interpreted astrue. If auxiliary functions, patterns, or
predicates are needed for specification purposes, these are defined by equations,
following thewherekeyword.

Traces are used explicitly in interface declarations to determine the behavior
at some point in time. We therefore regard the behavior of objects offering
the interface as a setT of possible (finite) traces. For every traceh in such a
setT , all prefixes ofh represent prior points in the life of the object, soT is
prefix-closed. The trace setT (o:F ) of o:F is defined as the prefix-closure of
the set of finite sequences overα(o:F ), defined by{h : α(o:F )∗ |Ain(h, o)⇒
(Iout(h, o)∧Aout(h, o))}. We do not want the output from the object to violate
the assumption of future extensions to a trace.Aout(h, o) is therefore implicitly
included as part of the invariant.

When an interfaceF inherits another interfaceFi and o offers F to the
environment,α(o:Fi) is included inα(o:F ). For the traces, inclusion is by
projection, soh/α(o:Fi) ∈ T (o:Fi) for allh ∈ T (o:F ). The trace setT (o:F )
of o:F , whereF inherits interfacesF1, . . . , Fm and whereA and I are the
assumption and invariant predicates ofF , is then given by the prefix-closure of{

h : α(o:F )∗
∣∣∣∣ ∧1≤i≤m h/α(o:Fi) ∈ T (o:Fi)
∧Ain(h, o)⇒ (Iout(h, o) ∧Aout(h, o))

}
.

Composition rules for interface declarations are found in [20].
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3. Case Study: Design of a Bank System

Consider a bank system with three kinds of objects: users, teller machines
and a center. Each teller machine communicates with one user (at a time) and
the center. The center may communicate with several teller machines.

3.1 Syntax of the Interfaces

Interfaces are specified for the different viewpoints to the teller machine
(Figure 1) and we use multiple inheritance to obtain a (more complete) spe-

User

USR

TMU

TMC

C

Machine
Teller

Teller

Teller
Machine

Center

Teller
Machine

Machine
Teller

Machine

Figure 1. The bank system, illustrated by objects and interfaces (upper case).

cification of the teller machine from the partial descriptions. The interfaces are
considered pairwise as they communicate with each other. We first consider the
methods and later the behavior of the system. The interaction between the teller
machine and the user consists of these operations:insert, a card is inserted into
the teller machine,giveCode, the user attempts to validate the card,query, the
user chooses activity, either“wd” (withdraw) or “end” (end session),withdraw,
request withdrawal of some amount by user,dispense, the action of dispensing
a sum to the user, andreturn, the card is returned to the user. To begin with,
we specify an interfaceUSR of users towards the teller machine and another
interfaceTMU of teller machines towards users.

interface USR
begin

with TMU
opr giveCode(out code : nat)
opr query(out choice : nat)
opr withdraw(out sum : nat)
opr dispense(in sum : nat)
opr return()

end

interface TMU
begin

with USR
opr insert(in card : nat)

end
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The interfacesUSR andTMU are mutually dependant. Due to thewith clause,
the teller machine can react to an eventu→x.insert(card) by calling methods
of u, available via theUSR interface. Thus,α(x : TMU) consists of the initiation
u→x.insert(card), the completionu←x.insert(card), and the events of
u: USR, for all u. The entire alphabet is available for requirement specification.

Interaction between the teller machine and the center consists of the opera-
tionsauthorize, which checks that a code and a card correspond, anddebit, if
the requested amount can be withdrawn from an account, do so and return true.
Otherwise, return false. The methods are placed in the interfaceC of the center,
leaving initiative with the teller machine.

interface C
begin

with TMC
opr authorize(card:nat,code:natout ok:bool)
opr debit(sum:nat,card:nat,code:natout ok:bool)

end

A corresponding interfaceTMC, with formal parameter c:C and no methods, is
declared for the teller machine. (Teller machines have static links to the center.)

3.2 An Abstract View of the System

Consider a requirement on the overall performance of the system, informally
described by:“Neither bank nor user loses money.”The requirement, when
formalized, says that transactions decrease the amount on a user’s account with
exactly the sum dispensed to the user, for every teller machine in the system.
However, the requirement is only true in between transactions.

LetR(x, h) calculate the amount received by a cardx after a historyh of
the current teller machine. It is sufficient to consider the completion events
of insert and dispense. Ignoring other events, a sequence of dispense actions
is preceded by an insert action that identifies the user. Similarly, the amount
withdrawn from the account of the cardx is calculated by a functionW(x, h).
All changes in the account balance can be identified through the completion
events of the debit method. Cases are considered in the order listed (à la ML),
where “others” matches any event, and parameters in event patterns can be left
unspecified by a wildcard “”. The current object of an interface is denoted
“this”. The requirement must hold when the card has been returned to a user.
For traces,ε is the empty trace,a denotes left append, andew denotes “ends
with”.

interface TMA(c:C)
inherits TMC(c), TMU

begin
inv ∀x ∈ nat : (h ew this→u.return())⇒W(x, h/c) = R(x, h/this: TMU)
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where
R : nat× α(this: TMU)∗ → nat
W : nat× α(c: C)∗ → nat

R(x, ε) = 0
R(x, u←this.insert(x) a this←u.dispense(y) a h) = R(x, u←this.insert(x) a h) + y
R(x, u←this.insert( ) a u←this.insert(x) a h) = R(x, u←this.insert(x) a h)
R(x, u←this.insert( ) a othersa h) = R(x, u←this.insert(x) a h)
R(x, othersa h) = R(x, h).

W(x, ε) = 0
W(x, this←c.debit(y, x, ; true) a h) =W(x, h) + y
W(x, othersa h) =W(x, h).

end

3.3 A Communication View of the Teller Machine

We now consider a communication view of the teller machine and specify
the interleaving of events fromTMU andTMC for two interaction scenarios:

1 The user gives an incorrect code for the card, so authorization fails. The
card is returned to the user and the session terminates.

2 The user gives the correct code to the teller machine. The session con-
tinues by a query-driven menu where the user requests an amount, this
request is accepted by the center and the amount is dispensed. At the end
of the session, the card is returned.

These scenarios are formalized in the interface TM.

interface TM(c:C)
inherits TMC(c:C), TMU

begin
inv h prp [start(u, x, y) [goodSession(u, x, y) | badCode(x, y)] quit(u)• u: USR, x, y: nat]∗

where
start(u, x, y) = u↔this.insert(x) this↔u.giveCode(y)
okCode(x, y) = this↔c.authorize(x, y; true)
badCode(x, y) = this↔c.authorize(x, y; false)
okWithdraw(u, x, y) = this↔u.query(; “wd” ) badAmount(u, x, y)∗ Dispense(u, x, y)
Dispense(u, x, y) = okAmount(u, x, y, sum) this↔u.dispense(sum) • sum : nat
okAmount(u, x, y, sum) = this↔u.withdraw(; sum) this↔c.debit(sum, x, y; true)
badAmount(u, x, y) = this↔u.withdraw(; sum) this↔c.debit(sum,x, y; false)
goodSession(u, x, y) = okCode(x, y) okWithdraw(u, x, y)∗ this↔u.query(; “end”)
quit(u)= this↔u.return()

end

The symbol↔ in a pattern represents an initiation succeeded by its completion.
Thus,u↔this.insert( ) reflects the initiation of a call to the methodinsert of
“this by “u”, followed by its completion. Incidentally,TM refinesTMA. The
argument uses induction over the traces of a TM-object and is omitted here.
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4. Conclusion

This paper presents a formalism for object viewpoints in open distributed
systems. In contrast to state-based approaches, we do not assume knowledge
of implementation details for objects in the environment. For open systems,
this is particularly attractive as components may be provided and replaced by
different manufacturers at different times. Instead of using transitions on in-
ternal states, object behavior is captured by observable interaction sequences.
Reasoning in terms of input and output lets us specify active as well as reactive
objects. By composing viewpoints to different objects, we specify viewpoints to
system components, i.e. system services on distributed platforms, where several
objects participate to provide the service. A refinement relation for viewpoint
specifications is suggested to capture controlled forms of service upgrade and
restructuring. Compositional reasoning by stepwise refinement is supported.
Using explicit object identities, the formalism captures certain forms of open-
ness, such as transmission of object identifiers and addition of new objects in
component refinement.

In order to facilitate reuse of specifications, object interfaces are introduced
that correspond to generic viewpoint specifications. The interfaces contain
both syntactic declarations and behavioral constraints. For open distributed
systems, it is common to employ an assumption guarantee style of object spe-
cification. With our observational approach, we introduce a particular flavor of
input/output-driven assumption guarantee specifications, where the assumption
considers histories that end with input while the guarantee considers histories
that end with output. Trace patterns provide a graphical specification style.

Interfaces and classes are organized in distinct inheritance hierarchies and
behavioral reasoning about objects of given interfaces is supplemented by static
correctness proofs for the code. The language is supported by a proof environ-
ment in PVS to facilitate formal reasoning based on the semantic foundation of
the formalism. In ongoing work, we investigate similar notions of refinement
for fault tolerance, time-outs, and other robustness issues, methodology for cap-
turing UML-type specifications into the formalism, and liveness specifications.
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