
1

Locally Abstract, Globally Concrete Semantics of

Concurrent Programming Languages

CRYSTAL CHANG DIN, University of Bergen, Norway
REINER HÄHNLE, Technische Universität Darmstadt, Germany
LUDOVIC HENRIO, Univ Lyon, EnsL, UCBL, CNRS, Inria, France
EINAR BROCH JOHNSEN, University of Oslo, Norway
VIOLET KA I PUN,Western Norway University of Applied Sciences, Norway
S. LIZETH TAPIA TARIFA, University of Oslo, Norway

Formal, mathematically rigorous programming language semantics are the essential prerequisite for the
design of logics and calculi that permit automated reasoning about concurrent programs. We propose a novel
modular semantics designed to align smoothly with program logics used in deductive verification and formal
specification of concurrent programs. Our semantics separates local evaluation of expressions and statements
performed in an abstract, symbolic environment from their composition into global computations, at which
point they are concretised. This makes incremental addition of new language concepts possible, without the
need to revise the framework. The basis is a generalisation of the notion of a program trace as a sequence
of evolving states that we enrich with event descriptors and trailing continuation markers. This allows to
postpone scheduling constraints from the level of local evaluation to the global composition stage, where
well-formedness predicates over the event structure declaratively characterise a wide range of concurrency
models. We also illustrate how a sound program logic and calculus can be defined for this semantics.

CCS Concepts: • Theory of computation → Parallel computing models; Programming logic; Program
semantics; • Software and its engineering → Concurrent programming structures;

ACM Reference Format:

Crystal Chang Din, Reiner Hähnle, Ludovic Henrio, Einar Broch Johnsen, Violet Ka I Pun, and S. Lizeth Tapia
Tarifa. 2024. Locally Abstract, Globally Concrete Semantics of Concurrent Programming Languages. ACM
Trans. Program. Lang. Syst. 1, 1, Article 1 (January 2024), 58 pages. https://doi.org/10.1145/3648439

1 INTRODUCTION

Denotational semantics describes the result of program execution by deriving a semantic entity,
generally a mathematical structure, from the program. An example of such a mathematical structure
is a state transformer from an initial to a final program state [10, 51]. The entities of a denotational
semantics, such as state transformers, do not describe how a program executes. For parallel shared-
variable programs, the result of execution may depend on the scheduling of the program’s different
atomic segments, leading to non-deterministic behavior. This makes denotational semantics in
terms of state-transformers cumbersome, because the parallel composition of compound statements

Authors’ addresses: Crystal Chang Din, Department of Informatics, University of Bergen, Norway; Reiner Hähnle, Technische
Universität Darmstadt, Dept. of Computer Science, Germany; Ludovic Henrio, Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP,
France; Einar Broch Johnsen, University of Oslo, Norway; Violet Ka I Pun, Western Norway University of Applied Sciences,
Norway; S. Lizeth Tapia Tarifa, University of Oslo, Norway.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
0164-0925/2024/1-ART1
https://doi.org/10.1145/3648439

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3648439
https://doi.org/10.1145/3648439

1:2 C. C. Din et al.

cannot be determined from the state-transformers of the statements alone but give rise to additional
requirements to avoid interference [11, 68, 76].
Trace semantics provides additional structure to the semantics of statements such that parallel

statements can be described compositionally from the semantics of their components. To capture
the result of program execution, trace semantics can be given in terms of sequences of states
[16, 18, 46, 73] or sequences of communication events [25, 31, 52, 57]. Hybrid traces, that include
both states and communication events, have previously been developed by Brookes [18] to define a
denotational semantics of concurrent separation logic, using events to manage low-level resources.

In this paper, we show how denotational semantics that combine such hybrid traces with contin-
uation markers can be used as a general framework to capture the execution of imperative parallel
programs, including a range of concurrency constructs such as the dynamic spawning of threads,
procedure calls, asynchronous and synchronous communication and cooperative concurrency.
We develop a general denotational format to describe how parallel programs synchronise and
interleave in terms of a hybrid notion of trace that combines states and communication events.

The proposed trace semantics scales flexibly to a range of concurrent, imperative programming
paradigms, as found, for example, in C, Java, ProMeLa [53], Actors [49], or Active Objects [27].
Specifically, given a program 𝑃 , running on a collection of communicating processors or cores,
we want to obtain the set of all global system traces that 𝑃 can produce starting from some initial
state. Our overall goal is to provide a semantics that aligns well with contract-based deductive
verification [42]. To this end, it is essential that the semantics cleanly separates local computations
(one statement on one core) from global ones; i.e., there must be a suitable notion of composition
that can generate the global traces from the local ones. It is known [17, 71] that compositionality
in denotational semantics shifts the flavour of the semantics in the direction of operational seman-
tics [78]. In our work, we isolate the operational aspects of composition into separate, global rules
that operate over denotational, local rules.
The envisaged semantics should also be modular in the following sense: it must be possible to

support a new language construct without the need to revise the whole framework. Ideally, there is
a single evaluation rule for each construct of the target language that can be applied independently
from all other rules: the recursive call to evaluate subsequent statements is not inside the semantic
evaluation of each statement. This is not only a good match with deductive verification rules of
program logics [42], but also with formal specification languages for concurrent programs that
have a trace semantics [13, 32, 61, 81, 83].
A trace semantics for a given target language, satisfying the requirements sketched above, can

be defined in three phases:

(1) Declare local evaluation rules for each syntax construct of the target language.
(2) Declare composition rules that combine local evaluation and process creation into global

traces. Scheduling is expressed declaratively as well-formedness constraints over traces.
(3) Define the generation of all global traces with the help of the composition rules from a suitable

initial configuration.

To achieve the desired degree of modularity, we generalise the standard notion of a program
trace [54], i.e., a sequence of evolving system configurations, starting in some initial state. We make
two generalisations. The first is that local states 𝜎 can be abstract. This means the value 𝜎 (𝑥) of
a memory location 𝑥 is permitted to be unspecified. One can think of an abstract value 𝜎 (𝑥) as a
Skolem constant 𝑥0 whose interpretation is determined by an external context. Alternatively, think
of symbolic execution [21, 64], where the value of a memory location 𝑥 may be a symbolic term 𝑥0
representing an unknown value. States containing abstract values are called symbolic, otherwise
they are called concrete.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:3

Symbolic states allow us to evaluate local code independently of its call context. For example,
when evaluating the semantics of a statement 𝑠 that receives a message from another process, the
value of that message cannot possibly be known independently of the call context. In this case, the
local evaluation of 𝑠 can be expressed in a trace with symbolic states. These symbolic states are
concretised when the global context of the local computations (here, the sender) is resolved, i.e. in
the composition rules during phase (2) above. Hence, the resulting global traces are concrete. Thus,
the name of our semantic framework: locally abstract, globally concrete (LAGC).

The second generalisation of traces concerns scheduling: concurrency models differ in the exact
locations at which a local computation can be interrupted (aka preempted) and how exactly the
computation is continued afterwards, i.e. which scheduling decision is taken next. To achieve maxi-
mum modularity, we do not build scheduling into a fixed set of rules. Instead, we use continuation
markers and events to specify when scheduling and preemption is possible.

As a result, local traces are not merely abstract, but as well contain events used in the composition
rules as interaction points. With the event mechanism, various concurrency models can be defined
easily in two parts: first, ensure that local evaluation rules generate suitable synchronisation events;
second, define a well-formedness predicate on concrete traces restricting the global traces that can
be generated to those reflecting the targeted concurrency model. Now it is sufficient to add the
well-formedness predicate as a premise to each composition rule.

A standard approach to programming language semantics is SOS [58, 67], where each semantic
rule either decomposes one complex or one atomic statement at a time. This results in a very
local, also termed small-step, operational semantics. In consequence, SOS semantics must represent
scheduling and the effects of interaction at the same time with other aspects of the semantics in a
non-modular manner. Mosses [70] proposed modular semantics as a way to increase modularity
of SOS by classifying interaction as read/write/read-write and providing a schematic approach to
compose transition labels. LAGC places itself in a non-SOS setting. It postpones task interaction to
composition rules that can express any form of interaction and so encapsulate complex communi-
cation or scheduling patterns. This is illustrated below with constraints on communication timing
(in Section 6) and cooperative scheduling (in Section 7.3).

Local rules for sequential parts of a language, which combine with global composition rules
synchronizing interactions between processes, are well-known from operational semantics of
concurrent systems [47, 50, 58]. For example, synchronous communication between processes
can be characterized by matching events on labelled transitions. In these operational semantics,
asynchronous communication is treated differently from synchronous communication, for example,
by spawning additional processes to encode the asynchronous nature of the communication [79].
In contrast, LAGC trace semantics permits a uniform treatment of synchronous and asynchronous
communication purely in terms of well-formedness conditions on traces. In LAGC, this is achieved
by defining well-formedness in terms of orderings of events in the traces: for example, sending and
receiving a message is represented by separate events, such that sending happens before reception
in well-formed traces. In fact, traces with events as used in LAGC turn out to be a flexible and
intuitive mechanism, which can be used to express a range of dependencies between processes
beyond synchronous communication (for example, object generation).

Each ingredient of the LAGC semantics—traces, events, abstraction, the separation of local and
global computations—is not new on its own. What sets the LAGC framework apart from any other
denotational semantics we are aware of, is its unique combination of these features: abstract traces
with events are used to supply a strictly local semantics to sequential code snippets. These are
then combined and instantiated to the sets of traces that can occur in a given concurrency model.
Scheduling is completely separated from the generation of state updates and events. Different
scheduling strategies are defined declaratively with well-formedness predicates. As a consequence,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:4 C. C. Din et al.

𝑥 ∈ Var ::= identifier
𝑣 ∈ Val ::= tt | ff | 0 | 1 | ...
𝑜𝑝 ∈ Op ::= == | < | > | ≤ | ≥ | + | - | * | / | . . .
𝑒 ∈ Exp ::= 𝑥 | 𝑣 | 𝑒 𝑜𝑝 𝑒

𝑠𝑒 ∈ Sexp ::= 𝑒 | ∗

Fig. 1. Syntax of expressions.

the LAGC semantic framework captures different forms of concurrency for imperative languages in
a modular and uniform manner. This includes communication patterns that are hard to characterize
in traditional small-step operational semantics [78] based on transitions between states, such as
causally ordered communication chains.
A LAGC-style trace semantics was pioneered for the active object language ABS [32]. Here we

show that, due to its modularity, LAGC semantics constitutes a general semantic framework for a
wide range of concurrent programming models: it is easy to add new syntactic constructs and to
accommodate different concurrency paradigms. We will demonstrate this as follows: starting with a
simpleWHILE-language, we define LAGC semantics for an increasingly complex series of languages
by successively adding new features, sequential as well as parallel ones. In the end we cover a
representative set of language features and concurrency models and instantiate our semantic
framework to two quite different concurrent programming languages. Additional examples of
applications of the LAGC semantics that make specific use of its design goals are found in Section 8.
The paper is organised as follows: In Section 2 we set up the formal framework that the LAGC

semantics is based upon. As explained above, we need symbolic states and traces that may contain
abstract values for memory locations. We also need a concretisation operator that instantiates a
symbolic trace to match a concrete context. In addition, we equip traces with states and continuation
markers. Section 3 introduces the LAGC framework along phases (1)–(3) for aWHILE-language. We
substantiate the claimmade above, that a LAGC semantics is a good match for deductive verification
calculi, by defining in Section 4 a program logic for WHILE with a concise soundness proof. In
Section 5, we gradually extend the semantics to local parallelism (with atomicity), local memory,
and procedure calls. All definitions and theorems from Sections 2, 3, and 5 have been mechanized
and proven [45] in Isabelle/HOL [74]. In Section 6, we take the step to multiple processors that send
and receive messages among each other. We show that a wide range of communication patterns
can be intuitively and declaratively characterised via well-formedness, including synchronous
and asynchronous communication, bounded and unbounded FIFO, as well as causality. Section 7
instantiates the LAGC framework to the rather different concurrency models found in the languages
ProMeLa and ABS, respectively. For the latter, we need to add objects and futures, as well as to
change the interleaving semantics, which turns out to be easily possible. Related work is discussed
in Section 9. Section 10 considers future directions for work and concludes.

2 BASICS

2.1 States

We assume given standard basic types, including integers, Booleans and process identifiers, with
standard value domains and associated operators. In addition, we allow starred expressions, repre-
senting unknown, symbolic values.

Definition 2.1 (Variables, Values, (Starred) Expressions). Let Var be a set of program variables, Val
a set of values, and Op a set of operators, with typical elements 𝑥 , 𝑣 , and 𝑜𝑝 , respectively. The sets
Val and Op include the values and operators of the basic types (see Figure 1). The set Exp contains

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:5

expressions, with typical element 𝑒 , obtained from variables, values, and by applying operators
to expressions. The set 𝑆𝑒𝑥𝑝 contains starred expressions, with typical element 𝑠𝑒 , obtained by
extending expressions with an additional symbol ∗.

We assume that all expressions are well-typed; i.e., in expressions, operators are only applied to
subexpressions which can be reduced to values of appropriate types. Let 𝑜𝑝 denote an evaluation
function for the operators op defined over the values of the basic types, such that 𝑣 𝑜𝑝 𝑣 ′ is a value
in the basic types. A Boolean expression is an expression that evaluates to a Boolean value when its
arguments are values of the basic types, and similarly for expressions of other basic types. Overline
notation is used for lists of different syntactic categories, e.g., 𝑣 and 𝑒 represent lists of values and
expressions, respectively. Let vars(𝑒) denote the set of variables in an expression 𝑒 , which has a
straightforward inductive definition.
We now define computation states. Usually, states are mappings from variables to concrete

values. To permit symbolic expressions (i.e., expressions containing variables) occurring as values
in states, the starred expression ∗ is used to represent a value for symbolic variables that cannot be
further evaluated. The ∗ symbol does not occur in programs, it is part of the semantic domain.

Definition 2.2 (Symbolic State, State Update). A symbolic state 𝜎 is a partial mapping
𝜎 : Var → Sexp

from variables to starred expressions. The notation 𝜎 [𝑥 ↦→ 𝑠𝑒] expresses the update of state 𝜎 at 𝑥
with expression 𝑠𝑒:

𝜎 [𝑥 ↦→ 𝑠𝑒] (𝑦) =
{
𝑠𝑒 𝑥 = 𝑦

𝜎 (𝑦) 𝑥 ≠ 𝑦 .

In a symbolic state, a symbolic variable is defined as a variable bound to an unknown value,
represented by the starred expression ∗. Symbolic variables play a different role than ordinary
variables: they act as parameters, relative to which a local computation is evaluated. To distinguish
them syntactically, we adopt the convention of using capital letters for symbolic variables as much
as possible. Note that the set of symbolic and non-symbolic variables are not two distinct categories
and a variable that is symbolic can become non-symbolic after substitution (see Example 2.7 below).

Definition 2.3 (Symbolic Variable). Symbolic variables in a state 𝜎 are variables mapped to ∗:
symb(𝜎) = {𝑋 ∈ Var | 𝜎 (𝑋) = ∗} .

We will also need the concept of the extension of a state:

Definition 2.4 (State Extension). We say that a state 𝜎 ′ extends a state 𝜎 if (i) dom(𝜎) ⊆ dom(𝜎 ′)
and (ii) 𝜎 (𝑥) = 𝜎 ′ (𝑥) for all 𝑥 ∈ dom(𝜎). We overload the subset symbol and write 𝜎 ⊆ 𝜎 ′.

Example 2.5. Consider a state 𝜎0 = [𝑥0 ↦→ 𝑌0 +𝑤0, 𝑌0 ↦→ ∗, 𝑤0 ↦→ 42, 𝑥1 ↦→ 𝑌1]. Observe that
(1) the expressions in the range of 𝜎0 can be simplified and (2) there are dangling references, such
as 𝑌1, not in the domain of 𝜎0.

The example shows that symbolic states are slightly too general for our purpose, motivating the
following definition, which constrains the variables that may occur in value expressions of states
to symbolic variables:

Definition 2.6 (Well-Formed State). A state 𝜎 is well-formed if it fulfils the following condition:
{𝑥 ∈ vars(𝜎 (𝑦)) | 𝑦 ∈ dom(𝜎)} ⊆ symb(𝜎) .

A well-formed state 𝜎 is concrete if symb(𝜎) = {}. For a concrete, well-formed state 𝜎 and all
𝑥 ∈ dom(𝜎), there is a value 𝑣 such that 𝜎 (𝑥) = 𝑣 .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:6 C. C. Din et al.

Example 2.7. The state 𝜎0 in Example 2.5 can be turned into a well-formed state 𝜎1 by simplifying
the expression 𝑌0 + 𝑤0, and binding 𝑌1 to a star, obtaining 𝜎1 = [𝑥0 ↦→ 𝑌0 + 42, 𝑌0 ↦→ ∗, 𝑤0 ↦→
42, 𝑥1 ↦→ 𝑌1, 𝑌1 ↦→ ∗]. We have that 𝜎1 = 𝜎0 [𝑥0 ↦→ 𝑌0 + 42, 𝑌1 ↦→ ∗] and symb(𝜎1) = {𝑌0, 𝑌1}.
Let 𝜎2 = 𝜎1 [𝑌0 ↦→ 3, 𝑌1 ↦→ 2]. After simplification, 𝜎2 is a concrete, well-formed state that can be
written as 𝜎2 = [𝑥0 ↦→ 45, 𝑌0 ↦→ 3, 𝑤0 ↦→ 42, 𝑥1 ↦→ 2, 𝑌1 ↦→ 2].

Henceforth, all states are assumed to be well-formed. We always assume states to be simplified by
the propagation of concrete values, similar to 𝜎2 in Example 2.7, otherwise non-symbolic variables
might occur as values. Symbolic states, i.e. states with symbolic variables, are close to states in
symbolic execution as used in path exploration [39], but simplified and with an additional restriction
(Definition 2.16 below).

2.2 Evaluation

The evaluation of expressions in the context of a symbolic state reduces known variables to their
values and keeps the symbolic variables inside the expression, reducing an expression as much as
currently possible. The evaluation function is defined as follows:

Definition 2.8 (Evaluation Function). Let 𝜎 be a symbolic state. The evaluation function val𝜎 :
𝐸𝑥𝑝 → 𝐸𝑥𝑝 for expressions in the context of 𝜎 is defined inductively:

val𝜎 (𝑥) =
{
𝑥 if 𝜎 (𝑥) = ∗
𝜎 (𝑥) otherwise

val𝜎 (𝑣) = 𝑣

val𝜎 (𝑒1 𝑜𝑝 𝑒2) =
{
val𝜎 (𝑒1) 𝑜𝑝 val𝜎 (𝑒2) if val𝜎 (𝑒1) ∈ Val and val𝜎 (𝑒2) ∈ Val
val𝜎 (𝑒1) 𝑜𝑝 val𝜎 (𝑒2) otherwise

In the following we will ensure that vars(𝑒) ⊆ dom(𝜎) holds, such that val𝜎 is a total function.

Example 2.9. Using state 𝜎1 of Example 2.7, we evaluate val𝜎1 (𝑥0 + 𝑌0 + 𝑌1) = (𝑌0 + 42) + 𝑌0 + 𝑌1.
Let val𝜎 (𝑒) denote the element-wise application of the evaluation function to all expressions in

the list 𝑒 , and likewise for sets.

2.3 Traces and Events

Traces are sequences over states and structured events. The presence of events makes it easy to
ensure global properties of traces via well-formedness conditions over events. Since states may be
symbolic, traces will be symbolic as well and it is necessary to constrain traces by symbolic path
conditions. We start with a general definition of events. Their specific structure will be added later.

Definition 2.10 (Event Marker). Let ev(𝑒) be an event marker over expressions 𝑒 .

Definition 2.11 (Path Condition). A path condition 𝑝𝑐 is a finite set of Boolean expressions. If 𝑝𝑐
contains no variables, then we can assume it to be fully evaluated; i.e. it is either ∅, {ff, tt}, {ff}, or
{tt}. A fully evaluated path condition is consistent if and only if it does not contain ff .

For any concrete state 𝜎 , val𝜎 (𝑝𝑐) is a path condition with no variables that can be fully evaluated.
Definition 2.12 (Conditioned Symbolic Trace). A symbolic trace 𝜏 is defined inductively by the

following rules (𝜀 denotes the empty trace):
𝜏 ::= 𝜀 | 𝜏 ↷ 𝑡

𝑡 ::= 𝜎 | ev(𝑒)
A conditioned symbolic trace has the form 𝑝𝑐 ⊲ 𝜏 , where 𝑝𝑐 is a path condition and 𝜏 is a symbolic
trace. If 𝑝𝑐 is consistent, we simply write 𝜏 for 𝑝𝑐 ⊲ 𝜏 .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:7

By definition, traces are finite. For simplicity, let ⟨𝜎⟩ denote the singleton trace 𝜀 ↷ 𝜎 . Concate-
nation of two traces 𝜏1, 𝜏2 is written as 𝜏1 · 𝜏2. The final state of a non-empty trace 𝜏 is selected with
last(𝜏), the first state of a non-empty trace 𝜏 with first(𝜏).

Example 2.13. Continuing Example 2.7, we define a conditioned symbolic trace 𝑝𝑐0 ⊲ 𝜏0 = {𝑌0 >
𝑌1} ⊲ ⟨𝜎1⟩↷ 𝜎1 [𝑥0 ↦→ 17].

Sequential Composition. A central feature of traces is that they semantically model the sequential
composition of program statements. Assume that 𝜏1 is a trace of a statement 𝑟 and 𝜏2 a trace of
another statement 𝑠 . To obtain the trace corresponding to the sequential composition of 𝑟 and 𝑠 , the
traces corresponding to 𝑟 and 𝑠 should be composed (joined) such that the last state of the first trace
and the first state of the second trace are generally identical. We generalize such a composition in
case the states are not exactly the same: to compose two traces 𝜏1 and 𝜏2 the first state of 𝜏2 should
be an extension of the last state of 𝜏1, but the resulting trace should only contain the larger of the
two states. This motivates the semantic chop ∗∗ on traces (following [73], who were inspired by
interval temporal logic [43] and process logic [77]):

Definition 2.14 (Chop on Traces). Let 𝑝𝑐1, 𝑝𝑐2 be path conditions and 𝜏1, 𝜏2 be symbolic traces,
and assume that 𝜏1 is a non-empty, finite trace. The semantic chop (𝑝𝑐1 ⊲ 𝜏1) ∗∗ (𝑝𝑐2 ⊲ 𝜏2) is defined
as follows:

(𝑝𝑐1 ⊲ 𝜏1) ∗∗ (𝑝𝑐2 ⊲ 𝜏2) = (𝑝𝑐1 ∪ 𝑝𝑐2) ⊲ 𝜏 · 𝜏2 where 𝜏1 = 𝜏 ↷ 𝜎, 𝜏2 = ⟨𝜎 ′⟩ · 𝜏 ′ and 𝜎 ⊆ 𝜎 ′ .

We say that two non-empty conditioned traces 𝑝𝑐1 ⊲ 𝜏1 and 𝑝𝑐2 ⊲ 𝜏2 are joinable when last(𝜏1) ⊆
first(𝜏2). Whenever the first trace is empty or the final state of the first trace cannot be extended
to the first state of the second trace, the operator is undefined. The definition extends to traces
without path conditions in the obvious way: 𝜏1 ∗∗ 𝜏2 is (∅ ⊲ 𝜏1) ∗∗ (∅ ⊲ 𝜏2).

Traces with Events. Events will be uniquely associated with the state in a trace at which they
occurred. The events do not update the values in a state, but they may extend a state with fresh
symbolic variables. To this aim, an event ev(𝑒) is inserted into a trace after a state 𝜎 and the state is
then augmented by a set𝑉 of symbolic variables. The notation we use for this operation is an event
trace ev𝑉𝜎 (𝑒) of length three:

ev𝑉𝜎 (𝑒) = ⟨𝜎⟩↷ ev(val𝜎 ′ (𝑒)) ↷ 𝜎 ′ where 𝜎 ′ = 𝜎 [𝑉 ↦→ ∗] .

Given a trace 𝜏 of the form 𝜏1 ↷ 𝜎 and event ev(𝑒), appending the event is achieved by the
trace 𝜏1 · ev𝑉𝜎 (𝑒). The preceding definition ensures that events in traces are joinable; 𝜏 ∗∗ ev𝑉𝜎 (𝑒) is
well-defined whenever last(𝜏) = 𝜎 . If 𝑉 is empty then the state is unchanged, in this case we omit
the set of symbolic variables:

ev𝜎 (𝑒) = ev∅𝜎 (𝑒)

Example 2.15. Event traces can be inserted at the middle of a trace. To insert an event ev(𝑌0)
that does not introduce symbolic variables at 𝜎1 to trace 𝜏0 in Example 2.13, we use the event
trace ev𝜎1 (𝑌0) = ⟨𝜎1⟩ ↷ ev(val𝜎1 (𝑌0)) ↷ 𝜎1 = ⟨𝜎1⟩ ↷ ev(𝑌0) ↷ 𝜎1. This results in the trace:
𝜏2 = {𝑌0 > 𝑌1} ⊲ ⟨𝜎1⟩ ↷ ev(𝑌0) ↷ 𝜎1 ↷ 𝜎1 [𝑥0 ↦→ 17]. To insert an event ev(𝑌2) that introduces
the symbolic variable 𝑌2, we use the event trace ev{𝑌2 }𝜎1 (𝑌2) = ⟨𝜎1⟩↷ ev(𝑌2) ↷ 𝜎1 [𝑌2 ↦→ ∗]. The
trace in Example 2.13 results in the trace:

𝜏 ′2 = {𝑌0 > 𝑌1} ⊲ ⟨𝜎1⟩↷ ev(𝑌2) ↷ 𝜎1 [𝑌2 ↦→ ∗] ↷ 𝜎1 [𝑌2 ↦→ ∗, 𝑥0 ↦→ 17] .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:8 C. C. Din et al.

Well-Formed Traces. Similar to the values of well-formed states, the expressions in events and
path conditions of a well-formed trace should only contain symbolic variables. This requires all
states in a trace to agree upon which variables are symbolic. We also impose an additional well-
formedness condition on events: any event occurring in a trace which is preceded by state 𝜎 , must
be followed by an extension of 𝜎 which at most includes the new symbolic variables introduced by
the event; i.e., it can be obtained by inserting an event trace at 𝜎 . This implies that a trace always
starts and ends with a state, never with an event. Well-Formed traces are formalised as follows:

Definition 2.16 (Well-Formed Trace). Let 𝑝𝑐 ⊲ 𝜏 be a conditioned symbolic trace and let 𝑉 =⋃
𝜎∈𝜏 symb(𝜎). The trace 𝑝𝑐 ⊲ 𝜏 is well-formed if the following conditions hold:

∀𝜎 ∈ 𝜏 . 𝜎 is well-formed (1)
∀𝜎 ∈ 𝜏 . (dom(𝜎) \ symb(𝜎)) ∩𝑉 = ∅ (2)

vars(𝑝𝑐) ⊆ 𝑉 (3)
∀ev(𝑒) ∈ 𝜏 . vars(𝑒) ⊆ 𝑉 (4)

∀ev(𝑒), 𝜏1, 𝜏2 .
(
𝜏 = 𝜏1 ↷ ev(𝑒) · 𝜏2 =⇒ ∃𝜎, 𝜎 ′ . last(𝜏1) = 𝜎 ∧ first(𝜏2) = 𝜎 ′ ∧ 𝜎 ⊆ 𝜎 ′

)
(5)

Equation (2) states that a variable that is symbolic in a state cannot be non-symbolic in another
state of the trace. Equations (3)–(4) ensure that any variable to occur in a path condition or event is
a symbolic variable from some state. Equation (5) guarantees that any event in a trace preceded by
𝜎 is followed by an extension 𝜎 ′.

Example 2.17. The traces 𝜏2 and 𝜏 ′2 in Example 2.15 have well-formed states. Only symbolic
variables occur in path conditions and events, and the events were added by inserting event traces.
Hence, they are well-formed.

Definition 2.18 (Concrete Traces). A concrete trace is a well-formed trace containing only concrete
states and events, as well as a fully evaluated, consistent path condition, which is reduced to ∅ or
{tt} and, therefore, removed from the trace. We use 𝑠ℎ for concrete traces, where the letters stand
for “shining” trace.

Example 2.19. Let 𝜎3 = [𝑥0 ↦→ 45, 𝑌0 ↦→ 3, 𝑤0 ↦→ 42, 𝑥1 ↦→ 2, 𝑌1 ↦→ 2], then a concrete trace of
length two is 𝑠ℎ0 = ⟨𝜎3⟩↷ 𝜎3 [𝑥0 ↦→ 17]. The path condition 𝑌0 > 𝑌1 is evaluated to 3 > 2 = tt in
𝜎3 and thus consistent.

Observe that 𝑠ℎ0 can be obtained from 𝜏0 in Example 2.13 by a suitable instantiation of its symbolic
variables. The precise definition of this operation is the purpose of the following subsection.

2.4 Concretisation

A concretisation mapping is defined relative to a state. It associates a concrete value to each symbolic
variable of the state.

Definition 2.20 (State Concretisation Mapping). A mapping 𝜌 : Var → Val is a concretisation
mapping for a state 𝜎 if dom(𝜌) ∩ dom(𝜎) = symb(𝜎).

A concretisation mapping 𝜌 may additionally define the value of variables that are not in the
domain of 𝜎 .

Example 2.21. Consider 𝜎1 of Example 2.7 where symb(𝜎1) = {𝑌0, 𝑌1}. We define the concretisa-
tion mapping 𝜌1 = [𝑌0 ↦→ 3, 𝑌1 ↦→ 2] for 𝜎1.
Let 𝜎4 = [𝑋 ↦→ ∗, 𝑧 ↦→ 3]. Then a concretisation mapping must give a value to 𝑋 , but not to 𝑧,

for example, 𝜌2 = [𝑋 ↦→ 2, 𝑌 ↦→ 0] is a concretisation mapping for 𝜎4.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:9

A symbolic state can be concretised using the values assigned to its symbolic variables in a
concretisation mapping to evaluate the symbolic expressions.

Definition 2.22 (State Concretisation). Let 𝜎 be a state and 𝜌 a concretisation mapping for 𝜎 . The
concretisation of 𝜎 with 𝜌 is defined as follows:

𝜌 • 𝜎 = 𝜌 ∪ {𝑥 ↦→ val𝜌 (𝜎 (𝑥)) | 𝑥 ∈ dom(𝜎) \ dom(𝜌)} .

Example 2.23. Continuing Examples 2.19 and 2.21, we obtain 𝜌1 • 𝜎1 = 𝜎3.

To concretise a symbolic trace 𝑝𝑐 ⊲ 𝜏 , we must apply a concretisation mapping 𝜌 to all states and
events of the trace. This means the domain of 𝜌 must comprise all symbolic variables that occur in
the trace. This is the case for well-formed traces, whose states must agree on which variables are
symbolic (Equation (2) in Definition 2.16).

Definition 2.24 (Trace Concretisation Mapping). A mapping 𝜌 is a trace concretisation mapping
for 𝜏 if it is a concretisation mapping for all the states in 𝜏 . We say that 𝜌 concretises 𝜏 .

Definition 2.25 (Symbolic Trace Concretisation). Let 𝑝𝑐 ⊲ 𝜏 be a well-formed trace and 𝜌 a con-
cretisation mapping for 𝜏 . The concretisation 𝜌 (𝑝𝑐 ⊲ 𝜏) of 𝑝𝑐 ⊲ 𝜏 is obtained as 𝜌 (𝑝𝑐) ⊲ 𝜌 (𝜏), where
𝜌 (𝑝𝑐) = val𝜌 (𝑝𝑐) and 𝜌 (𝜏) is defined as follows:

𝜌 (𝑡1 · · · 𝑡𝑛 · · ·) = 𝜌 (𝑡1) · · · 𝜌 (𝑡𝑛) · · ·
𝜌 (𝜎) = 𝜌 • 𝜎

𝜌 (ev(𝑒)) = ev(val𝜌 (𝑒))

Proposition 2.26. The concretisation of a state is a concrete state. The concretisation of a well-
formed trace is a concrete, well-formed trace. Any concrete state or trace is a concretisation of itself.

Example 2.27. We continue to use the symbolic trace 𝑝𝑐0 ⊲ 𝜏0 of Example 2.13 and concretise it
with the mapping 𝜌1 of Example 2.21. The resulting concrete trace is 𝑠ℎ0 from Example 2.19, where
the path condition is reduced to {tt} and removed from the trace.

2.5 Continuations

To capture the local semantics of a language, below we define an evaluation function val𝜎 (𝑠) that
evaluates a single statement 𝑠 in a—possibly symbolic—state 𝜎 to a set of conditioned, symbolic
traces. Compositional local evaluation rules can then be defined for each statement by adding a
continuation marker at the end. Continuation markers are needed, if 𝑠 is a composite statement
that requires separate evaluation of its constituent parts. In particular, 𝑠 might not terminate, but
this should not jeopardise parallel computations when computing a sequential trace for a global
system. We avoid this issue by stopping the evaluation after a finite number of steps by means of a
continuation marker, defined as follows:

Definition 2.28 (Continuation Marker). Let 𝑠 be a program statement. The continuation marker
K(𝑠) expresses that a given trace is extended by the traces resulting from computing 𝑠 . The empty
continuation, denoted K(), expresses that nothing remains to be computed.1 The statement
occurs only in traces and not source programs.

The argument to the continuation marker is the code on which evaluation will continue. The
evaluation of this code happens at a later stage, during the computation of the overall trace. But
at this later stage, a proper trace extension must only produced if the continuation is not . To
this aim, must be a continuation (the only one) that is evaluated to the empty trace. In contrast,
1The mnemonics of the symbol is that from an empty bottle nothing can be consumed.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:10 C. C. Din et al.

𝑠 ∈ Stmt ::= skip | 𝑥 := 𝑒 | if 𝑒 { 𝑠 } | 𝑠; 𝑠 | while 𝑒 { 𝑠 }

Fig. 2. The syntax for statements inWHILE.

the skip statement is not evaluated to an empty trace, but to a singleton trace consisting of just
the current state. When atomic statements are evaluated, there is no continuation code but only a
return of control. In this case, we end the trace with an empty continuation (see Section 3.1). Local
evaluation (corresponding to phase (1) in Section 1) is defined below such that for each statement 𝑠
and symbolic state 𝜎 , the result of val𝜎 (𝑠) is a set of conditioned, symbolic traces together with
their continuation markers. Slightly abusing terminology, a conditioned symbolic trace with its
continuation marker is called a continuation trace and written as 𝑝𝑐 ⊲ 𝜏 · K(𝑠′), where 𝜏 is a finite
trace. The intuition is that a continuation trace extends into a trace; we denote by CTr the type of
continuation traces.

3 LAGC SEMANTICS OF WHILE

We define a LAGC semantics forWHILE, a language with basic sequential constructs that can be seen
as a kernel of imperative programming languages [10]. The statements ofWHILE consist of skip,
assignment, conditional, sequential composition, and while-loops. The syntax for statements is
given in Figure 2, where we assume given standard expressions 𝑒 . Assignment binds the value
of an expression to a variable. Conditionals and while-loops depend on the value of a Boolean
expression 𝑒 . We assume the standard semantics of this language to be known, and use it to illustrate
our trace semantics. Local rules (phase (1)) unfold the traces until the next possible scheduling
point, marked by a continuation. Composition rules (phase (2)) select the next trace to be unfolded
at the scheduling point; for the sequential language, there is only one trace so the latter selection
is deterministic. Due to its simplicity,WHILE merely needs state-based traces, the use of events is
covered in Section 5.4.

3.1 Local Evaluation

Local evaluation rules a single statement in the context of a symbolic state, and returns a set of
finite continuation traces. Each evaluation rule represents the execution of a single statement,
producing a set of continuation traces. The evaluation rules are reminiscent of small-step reduction
rules, but work in a denotational setting and with a symbolic context. We overload the symbol val𝜎
and declare it with the type val𝜎 : Stmt → 2CTr.
The rule for skip generates an empty path condition, returns the state it was called in, and

continues with the empty continuation. The result is a set containing one singleton trace:

val𝜎 (skip) = {∅ ⊲ ⟨𝜎⟩ · K()} . (6)

The assignment rule generates an empty path condition and a trace from the current state 𝜎 to a
state which updates 𝜎 at 𝑥 , and continues with an empty continuation. The result is one trace of
length two:

val𝜎 (𝑥 := 𝑒) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ val𝜎 (𝑒)] · K()} . (7)

The rule for the conditional statement branches on the value of the condition, resulting in two
traces with different path conditions. The first trace is obtained from the current state and the
continuation with the statements in the if-branch, and the second trace has the empty continuation
(corresponding to the empty else-branch):

val𝜎 (if 𝑒 { 𝑠 }) = {{ val𝜎 (𝑒) = tt} ⊲ ⟨𝜎⟩ · K(𝑠), {val𝜎 (𝑒) = ff} ⊲ ⟨𝜎⟩ · K() } . (8)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:11

The semantics of while is similar to the semantics for the conditional statement. This gives us
the opportunity to illustrate that the semantics of a statement can easily be expressed in terms of
the semantics of another statement, without having to expose intermediate states:

val𝜎 (while 𝑒 { 𝑠 }) = val𝜎 (if 𝑒 { 𝑠; while 𝑒 { 𝑠 }}) . (9)

Thus, evaluating val𝜎 (while 𝑒 { 𝑠 }) results in two traces. If the path condition 𝑒 evaluates to
true, then the continuation is K(𝑠;while 𝑒 { 𝑠 }), otherwise it is the empty continuation.
The rule for sequential composition 𝑟 ; 𝑠 is obtained by first evaluating 𝑟 to traces of the form

𝑝𝑐 ⊲ 𝜏 · K(𝑟 ′) with continuation 𝑟 ′. The statement 𝑠 can simply be added to this continuation:

val𝜎 (𝑟 ; 𝑠) = {𝑝𝑐 ⊲ 𝜏 · K(𝑟 ′; 𝑠) | 𝑝𝑐 ⊲ 𝜏 · K(𝑟 ′) ∈ val𝜎 (𝑟)} . (10)

A subtle point concerns the propagation of empty continuations: 𝑟 ′ might be the empty continu-
ation , which should be ignored. This behavior is captured in the following rewrite rule, which is
eagerly applied to statements occurring inside continuations:

𝑠; 𝑠′ ⇝ 𝑠′ if 𝑠 = . (11)

This rewrite rule reflects that the empty continuation is an identity element for sequential
composition. Similar rewrite rules will be added to handle identity elements for other composition
operators in the sequel.

Please observe that the evaluation rules for atomic statements always produce a set of continua-
tion traces ending with empty continuation K() to indicate a return of control.

Example 3.1. Consider the sequential statement 𝑠𝑠𝑒𝑞 = (𝑥 := 1; 𝑦 := 𝑥 + 1). To explain how its
evaluation is performed, we start from an arbitrary symbolic state 𝜎 (to be instantiated later by a
composition rule). The equation for sequential composition yields

val𝜎 (𝑠𝑠𝑒𝑞) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 1] · K(𝑦 := 𝑥 + 1)} . (12)

To perform this evaluation, we need the result of evaluating the first assignment in the context of 𝜎 :

val𝜎 (𝑥 := 1) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 1] · K()} .

In the composition rules it might be necessary to evaluate the empty continuation, so we must
define it. As explained Sect. 2.5, in contrast to evaluation of statements, evaluating produces the
empty set of traces:

val𝜎 () = {} . (13)

Proposition 3.2. Given a concrete state 𝜎 and a program 𝑠 such that 𝑣𝑎𝑟𝑠 (𝑠) ⊆ dom(𝜎), then
val𝜎 (𝑠) is a set of concrete continuation traces of the form 𝑝𝑐 ⊲𝜏 ·K(𝑠′). There is exactly one continuation
trace with a consistent path condition.

3.2 Trace Composition

Local traces are composed into concrete global ones. AsWHILE is sequential and deterministic,
we expect to obtain exactly one trace, provided that the execution starts in a concrete state that
assigns values to all the variables of a program. Proposition 3.2 ensures that all local evaluation
rules produce concrete traces in this case.
The task of the composition rule forWHILE-programs is to repeatedly evaluate one statement

at a time in a concrete state until the next continuation, then stitch the resulting concrete traces
together. Given a concrete trace 𝑠ℎ with final state 𝜎 and a continuation K(𝑠), we evaluate 𝑠 starting
in 𝜎 . The result is a set of conditioned traces from which one trace with a consistent path condition

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:12 C. C. Din et al.

and a trailing continuation K(𝑠′) is chosen.2 The chosen trace 𝜏 is joined with the given trace 𝑠ℎ.
Afterwards, the composition rule can be applied again to the extended concrete trace and K(𝑠′).

𝜎 = last(𝑠ℎ) 𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝜎 (𝑠) 𝑝𝑐 consistent

𝑠ℎ,K(𝑠) → 𝑠ℎ ∗∗ 𝜏,K(𝑠′)
(14)

The rule assumes that 𝑠 is evaluated to a concrete trace so that 𝑠ℎ ∗∗ 𝜏 stays concrete. At this
stage, symbolic traces do not yet figure. This works as long as Proposition 3.2 ensures that 𝑝𝑐 ⊲𝜏 is a
concrete trace, however, in general the proviso 𝑣𝑎𝑟𝑠 (𝑠) ⊆ dom(𝜎) does not hold. There are several
approaches to address this. For example, it is sufficient to consider the non-initialised variables of 𝑠 ,
instead of all of them. We avoid a lengthy definition to address this technicality by simply assuming
that last(𝑠ℎ) defines all variables of 𝑠 . This can be easily achieved by initialising all variables to
default values at program start, as done below.

3.3 Global Trace Semantics

Let 𝑠ℎ,K(𝑠) ∗→ 𝑠ℎ′,K(𝑠′) denote the transitive closure of applying rule (14), expressing that 𝑠ℎ′,K(𝑠′)
can be reached from 𝑠ℎ,K(𝑠) in zero or more steps. Let 𝑠ℎ denote a possibly infinite trace. Such
infinite traces never appear inside the rules, but only as a result from constructing a maximal
sequence of successive applications of trace composition rules. Formally, an infinite trace is the
limit of an increasing sequence of traces, in contrast to a trace that has no final element.

Definition 3.3 (Program Semantics). Given a program s and a state 𝜎 , let

𝑠ℎ0, K(𝑠0) → 𝑠ℎ1, K(𝑠1) → · · ·

be a maximal sequence obtained by the repeated application of rule (14), starting from ⟨𝜎⟩,K(𝑠). If
the sequence is finite, then it must have the form3

⟨𝜎⟩,K(𝑠) ∗→ 𝑠ℎ,K() .

If a sequence is infinite (and does not reach an empty continuation), we let 𝑠ℎ = lim𝑖→∞ 𝑠ℎ𝑖 for this
sequence. The set of all such possibly infinite traces 𝑠ℎ for a program 𝑠 starting from a state 𝜎 is
denoted Tr(𝑠, 𝜎).

Please observe that the traces produced by a sequence of rule applications grow monotonically:
In Definition 3.3 we have 𝑠ℎ𝑖 ≤ 𝑠ℎ𝑖+1 for all 𝑖 ≥ 0, where ≤ is the prefix order on traces. The traces
and continuations may reach a fixpoint or grow indefinitely, in both cases, the limit in Definition 3.3
is well-defined.

For any statement 𝑠 , let 𝐼𝑠 be the state, where [𝑥 ↦→ 0] for all 𝑥 ∈ 𝑣𝑎𝑟𝑠 (𝑠) (for simplicity, assume
all variables are of integer type—the generalisation is obvious). To help readability, we sometimes
omit such default values from the states in the following examples.

Example 3.4. The only trace for skip starting from a state 𝜎 is the singleton trace ⟨𝜎⟩, thus
Tr(skip, 𝜎) = {⟨𝜎⟩}. It follows that skip is the unit of the sequential composition operator: For
any statement 𝑠 and state 𝜎 , we have Tr(skip; 𝑠, 𝜎) = Tr(𝑠; skip, 𝜎) = Tr(𝑠, 𝜎).

2For a deterministic language like WHILE, there is exactly one trace, but the rule is designed to work for the non-
deterministic extension below as well.
3Observe that 𝑠ℎ,K() is the end of the execution because the evaluation of K() returns {} such that the composition
rule (14) is no longer applicable. The empty continuation is obtained once the whole program has been evaluated.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:13

Example 3.5. We apply rule (14) to ⟨𝐼𝑠𝑒𝑞⟩,K(𝑠𝑠𝑒𝑞), the program from Example 3.1. To obtain the
premise, we instantiate Equation (12) with 𝜎 = 𝐼𝑠𝑒𝑞 .

𝐼𝑠𝑒𝑞 = last(⟨𝐼𝑠𝑒𝑞⟩) ∅ consistent
∅ ⊲ ⟨𝐼𝑠𝑒𝑞⟩↷ 𝐼𝑠𝑒𝑞 [𝑥 ↦→ 1] · K(𝑦 := 𝑥 + 1) ∈ val𝐼𝑠𝑒𝑞 (𝑥 := 1;𝑦 := 𝑥 + 1)

⟨𝐼𝑠𝑒𝑞⟩,K(𝑥 := 1;𝑦 := 𝑥 + 1) → ⟨𝐼𝑠𝑒𝑞⟩↷ 𝐼𝑠𝑒𝑞 [𝑥 ↦→ 1], K(𝑦 := 𝑥 + 1)
(15)

For the subsequent rule application, it is necessary to evaluate the program 𝑦 := 𝑥 + 1 in the
continuation. Again, we do this for a general state, while in the rule we use 𝜎 = 𝐼𝑠𝑒𝑞 [𝑥 ↦→ 1] (from
now on we omit 𝐼𝑠𝑒𝑞):

val𝜎 (𝑦 := 𝑥 + 1) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑦 ↦→ val𝜎 (𝑥 + 1)] · K()}

[𝑥 ↦→ 1] = last(⟨𝐼𝑠𝑒𝑞⟩↷ [𝑥 ↦→ 1]) ∅ consistent
∅ ⊲ ⟨[𝑥 ↦→ 1]⟩↷ [𝑥 ↦→ 1] [𝑦 ↦→ val[𝑥 ↦→1] (𝑥 + 1)] · K() ∈ val[𝑥 ↦→1] (𝑦 := 𝑥 + 1)

⟨𝐼𝑠𝑒𝑞⟩↷ [𝑥 ↦→ 1],K(𝑦 := 𝑥 + 1) → ⟨𝐼𝑠𝑒𝑞⟩↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 1, 𝑦 ↦→ 2],K()
(16)

Hence, Tr(x:=1; y:=x+1, 𝐼𝑠𝑒𝑞) = {⟨𝐼𝑠𝑒𝑞⟩↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 1, 𝑦 ↦→ 2]}.

Example 3.6. We illustrate the semantics of a non-terminating loop without effect. Consider the
program 𝑠loop = (while tt {skip}; 𝑥 := 1), where we observe a fix-point in the local evaluation
and in the global composition rule such that we actually never evaluate 𝑥 := 1. To observe this
effect, as with previous examples, we start with an arbitrary symbolic state 𝜎 . After applying the
rules for while and if, we obtain

val𝜎 (𝑠loop) = val𝜎 (if tt {skip;while tt {skip}};𝑥 := 1)
= {{tt} ⊲ ⟨𝜎⟩ · K(skip; 𝑠loop), {ff} ⊲ ⟨𝜎⟩ · K(𝑥 := 1) } (17)

We can apply the rules for skip and sequential composition to (skip; 𝑠loop) and obtain:

val𝜎 (skip; 𝑠loop) = {∅ ⊲ ⟨𝜎⟩ · K(𝑠loop)} . (18)

We now apply rule (14) to ⟨𝐼loop⟩,K(𝑠loop), where we instantiate Equation (17) with 𝜎 = 𝐼loop:

𝐼loop = last(⟨𝐼loop⟩) {tt} consistent
{tt} ⊲ ⟨𝐼loop⟩ · K(skip; 𝑠loop) ∈ val𝐼loop (𝑠loop)

⟨𝐼loop⟩,K(𝑠loop) → ⟨𝐼loop⟩,K(skip; 𝑠loop)
(19)

since ⟨𝐼loop⟩ ∗∗ ⟨𝐼loop⟩ = ⟨𝐼loop⟩. We apply rule (14) one more time, using Equation (18) and reach the
initial configuration ⟨𝐼loop⟩,K(𝑠loop) again:

𝐼loop = last(⟨𝐼loop⟩) ∅ consistent
∅ ⊲ ⟨𝐼loop⟩ · K(𝑠loop) ∈ val𝐼loop (skip; 𝑠loop)

⟨𝐼loop⟩,K(skip; 𝑠loop) → ⟨𝐼loop⟩,K(𝑠loop)
(20)

Hence, the set of traces for 𝑠loop starting from 𝐼loop is the singleton trace Tr(𝑠loop, 𝐼loop) = {⟨𝐼loop⟩}.

Example 3.6 shows that, in contrast to denotational or big step semantics, we only define trace
semantics step by step. Thus, in our context, it is not a problem if the semantics of an infinite loop
is a finite trace as the second part of the computation after an infinite loop (in the example, 𝑥 := 1)
is not evaluated.
Alternatively, we could have defined the result of evaluating while tt {skip} to be an infinite

trace by duplicating the state at the beginning of each loop body execution. However, in contrast

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:14 C. C. Din et al.

to a compositional semantics, where this would matter, here it is merely a design choice of little
consequence: Infinite traces are never composed in our case.

Example 3.7. A non-terminating loop with effects on the state has a different semantics compared
to Example 3.6. Consider the program 𝑠w = (𝑥 := 0; while tt {𝑥 := 𝑥 + 1}). The LAGC semantics
for this non-terminating program is defined as a limit of partial traces. It is an infinite trace with 𝑥

indefinitely increasing:
Tr(𝑠w, 𝐼w) = {⟨𝐼𝑤⟩↷ [𝑥 ↦→ 0] ↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 2] ↷ . . .}

3.4 Discussion

As mentioned, as long as we start semantic evaluation in a sufficiently initialised concrete state,
Proposition 3.2 ensures that only concrete traces will be generated by local rules. Consequently,
we have a semantics that can be aptly called modular and compositional (exactly one independent
rule per language construct and a uniform composition rule), but the overhead introduced with
symbolic traces is not yet justified.

The advantages offered by symbolic traces and states are realised in the following two sections.
In Section 4 we define a program logic forWHILE that employs symbolic traces at the level of the
calculus. This close correspondence between semantics and deduction system is the basis for an
intuitive soundness proof for the deductive system.
In Sections 5–7 we extend WHILE with a number of complex instructions, in particular, for

parallel programming. It will be seen that a wide range of concurrency paradigms fit naturally into
the LAGC semantic framework.

4 A PROGRAM LOGIC AND SOUND CALCULUS FORWHILE

We provide a dynamic logic (DL) [44] as well as a calculus for reasoning about the correctness of
WHILE-programs that is sound relative to our semantics. In deductive verification dynamic logic
[4, 12] offers technical advantages over Hoare logic [51]: it is syntactically closed with respect
to first-order logic, more expressive, and cleanly separates first-order (“logical”) variables from
program variables [4, p. 50]. Below we define program formulas of the form𝜓 → 𝜏 [𝑠] 𝜙 , where 𝜏 is
a finite symbolic trace, 𝑠 anyWHILE-statement,𝜓 a first-order formula, and 𝜙 a formula that in turn
may contain programs. The intuitive meaning is that any terminating execution of 𝑠 continuing a
trace that concretises 𝜏 and started in a state that satisfies𝜓 , must end in a state that satisfies 𝜙 . The
modality [𝑠] corresponds to a continuation in the semantics ofWHILE, represented symbolically.

The unusual aspect of this setup is the presence of a symbolic trace𝜏 inside a formula. It alignswith
our locally abstract semantics, but it is also justified, because—unlike a semantics—rule schemata
in calculus rules necessarily deal with symbolic values: a verification calculus aims at proving a
property that holds for all inputs of a program, notmerely for a single run. Nevertheless, the presence
of symbolic traces inside formulas may appear as insufficiently syntactic or as an inappropriate
intrusion of the semantics into the calculus. However, efficient syntactic representations of symbolic
assignments are fairly common and well understood: for example, the deductive verification system
KeY uses symbolic updates4 [4] and in the B-method explicit generalised substitutions play a
comparable role [1]. To keep the calculus as general as possible, we do not commit to a particular
implementation of symbolic traces.
The calculus rules given below will symbolically execute a program 𝑠 in a sequent of the form

𝜓 → 𝜏 [𝑠] 𝜙 and produce verification conditions of the form Γ ⇒ 𝜏 𝜙 , where 𝜙 is a first-order
formula and 𝜏 a symbolic trace.
4Updates can be viewed as a syntactic, efficient, lazy representation of symbolic traces: concrete values are not eagerly
substituted and assignments are kept in single static (SSA) shape.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:15

4.1 Dynamic Logic

Given a signature Σ with typed function and predicate symbols and a set 𝑉 of logical variables
which is disjoint from the symbols in Σ, let Terms(Σ,𝑉) denote the well-formed terms over Σ and
𝑉 (respecting type compatibility). Note that the logical variables in 𝑉 are disjoint from program
variables Var . Unlike the latter, the logical variables can be bound by quantifiers and do not change
their value during program execution.

Definition 4.1 (DL Formula). Let Σ be a signature and 𝑉 a set of logical variables disjoint from Σ.
The language DL(Σ,𝑉) of formulas in dynamic logic is defined inductively as follows:

(1) 𝐵 ∈ DL(Σ,𝑉) if 𝐵 ∈ Terms(Σ,𝑉) and the type of 𝐵 is Boolean
(2) ¬𝜙1, 𝜙1 ∧ 𝜙2, 𝜙1 ∨ 𝜙2, 𝜙1 → 𝜙2, 𝜙1 ↔ 𝜙2 ∈ DL(Σ,𝑉) if 𝜙1, 𝜙2 ∈ DL(Σ,𝑉)
(3) ∃𝑥 · 𝜙, ∀𝑥 · 𝜙 ∈ DL(Σ,𝑉) if 𝑥 ∈ 𝑉 and 𝜙 ∈ DL(Σ,𝑉)
(4) [s] 𝜙 ∈ DL(Σ,𝑉) if 𝑠 is a, possibly empty,WHILE-program and 𝜙 ∈ DL(Σ,𝑉)

We often omit the signature and variable set of 𝜙 ∈ DL(Σ,𝑉) and simply write 𝜙 ∈ DL.

There is a subtle point about empty programs. As explained above, the program 𝑠 in the modality
can be viewed as the continuation of the current trace. The rules of the calculus defined below will
symbolically execute 𝑠 from left to right, until the program remaining to be executed is empty. For
this reason, we allow empty programs, represented by skip, in clause (4). The empty program is
the identity element for the composition operator (see Example 3.4). However, as pointed out in
Sect. 2.5, the continuation with the empty program is not the same as the empty continuation. The
former requires a semantics that amounts to a singleton trace, which is reflected in Definition 4.3
below.

Definition 4.2 (Substitution). Given a language DL(Σ,𝑉) and a set of logical variables 𝑉 ′ =
{𝑥1, . . . , 𝑥𝑛} such that 𝑉 ′ ⊆ 𝑉 , a substitution [𝑥1/𝑡1, . . . , 𝑥𝑛/𝑡𝑛] is a function 𝑉 ′ → Terms(Σ,𝑉)
which associates with every 𝑥𝑖 ∈ 𝑉 ′ a type-compatible term 𝑡𝑖 ∈ Terms(Σ,𝑉).

Denote by 𝜙 [𝑥1/𝑡1, . . . , 𝑥𝑛/𝑡𝑛] the application of a substitution [𝑥1/𝑡1, . . . , 𝑥𝑛/𝑡𝑛] to a logical
formula𝜙 ∈ DL(Σ,𝑉). Observe that applying a substitution removes occurrences of logical variables
in a formula and does not affect programs. The application of the substitution has a straightforward
inductive definition over 𝜙 (omitted here).
We write 𝑠ℎ |= 𝜙 and 𝜎 |= 𝜙 to denote5 that a formula 𝜙 is valid for a concrete trace 𝑠ℎ and in a

concrete state 𝜎 , respectively (equivalently, 𝑠ℎ and 𝜎 satisfy 𝜙). Formally, satisfiability can be defined
as follows:

Definition 4.3 (Satisfiability of DL Formulas). Let𝜙 ∈ DL(Σ,𝑉) be a DL formula, 𝐵 ∈ Terms(Σ,𝑉)
a Boolean term, 𝜎 a concrete state and 𝑠ℎ a finite, concrete trace.
𝜎 |= 𝐵 ⇐⇒ val𝜎 (𝐵) = tt
𝜎 |= ¬𝜙 ⇐⇒ 𝜎 ̸ |= 𝜙

𝜎 |= 𝜙1 ∧ 𝜙2 ⇐⇒ 𝜎 |= 𝜙1 and 𝜎 |= 𝜙2 (analogous for the remaining propositional connectives)
𝜎 |= ∃𝑥 · 𝜙 ⇐⇒ 𝜎 |= 𝜙 [𝑥/𝑡] for some substitution [𝑥/𝑡] where 𝑡 ∈ Terms(Σ,𝑉), variable-free
𝜎 |= ∀𝑥 · 𝜙 ⇐⇒ 𝜎 |= 𝜙 [𝑥/𝑡] for all substitutions [𝑥/𝑡] where 𝑡 ∈ Terms(Σ,𝑉), variable-free
𝜎 |= [s] 𝜙 ⇐⇒ 𝑠ℎ |= 𝜙 for all 𝑠ℎ ∈ Tr(s, 𝜎)
𝑠ℎ |= 𝜙 ⇐⇒ 𝑠ℎ non-empty, last(𝑠ℎ) = 𝜎, and 𝜎 |= 𝜙

Observe that the finiteness of 𝑠ℎ in the clause “𝜎 |= [s] 𝜙 ⇐⇒ 𝑠ℎ |= 𝜙 for all 𝑠ℎ ∈ Tr(s, 𝜎)” implies
a partial correctness semantics.
5To simplify presentation, we assume a fixed standard interpretation of the symbols in Σ. It is straightforward to accommodate
undefined symbols and relativise satisfiability to first-order models.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:16 C. C. Din et al.

4.2 Calculus

As usual in deductive verification [42], we define a calculus operating on sequents. These have
the form Γ ⇒ 𝜏 𝜙 , where Γ is a set of formulas thought to be implicitly conjoined (called the
antecedent), the symbol⇒ can be read as implication, 𝜏 is a non-empty, finite symbolic trace, and
𝜙 is a DL formula. Without loss of generality, we can assume that Γ consists of a single formula𝜓 .

Definition 4.4 (Valid Sequent). A sequent is valid, denoted |= 𝜓 ⇒ 𝜏 𝜙 , iff for all concretisation
mappings 𝜌 such that first(𝜌 (𝜏)) |= 𝜓 , we have that

last(𝜌 (𝜏)) |= 𝜙 .

The proof system is based on analysing statements in explicit contexts, inspired by the context-
reduction semantics of Felleisen and Hieb [37]. Context-reduction semantics separates local evalua-
tion from the context in which that evaluation occurs, for example, to decouple the evaluation of
expressions from the evaluation of statements. Thus, in a context-reduction semantics, a context
may be seen as the continuation of an evaluation. In our proof system, a context may be seen as an
abstraction for a composition operator in the language syntax. In contrast to context-reduction
semantics, which uses contexts to lift premises in transition rules to define a single execution path,
our contexts reflect the composition operators of the considered language in the construction of
the proof tree over symbolic execution paths. In the proof system, contexts will be passed around
and manipulated in the tree, reminiscent of continuations in the LAGC semantics.

Contexts for Sequential Composition. We introduce the concept of a “hole” and that of filling a
hole. Let contexts be defined as follows for sequential composition:

𝐶 ∈ Context ::= • | 𝐶; 𝑠 .

A context has exactly one hole. We denote by 𝐶 [𝑠] the statement in which the hole of the context
𝐶 has been replaced by 𝑠 and by 𝐶1 [𝐶2] the context in which the hole in the context 𝐶1 has been
filled by the context 𝐶2. Any statement is equivalent to itself in the empty context (i.e., 𝑠 = •[𝑠])
and 𝐶 [𝑠1; 𝑠2] is equivalent to 𝐶 [•; 𝑠2] [𝑠1].

Contexts are used to express that we focus our analysis of a statement on a constituent statement;
we denote by 𝑠 @ 𝐶 that we analyse 𝑠 in a given context 𝐶 . Observe that any statement 𝑠′ can be
expressed with such a focus 𝑠 @𝐶 if 𝑠′ = 𝐶 [𝑠]. In a given state 𝜎 , we define the traces of statements
that occur in a context in terms of the traces of their corresponding context-free continuations
(Definition 3.3), as follows:

Tr(𝑠@𝐶, 𝜎) = {𝑠ℎ ∗∗ 𝑠ℎ′ | ⟨𝜎⟩, K(𝑠) → 𝑠ℎ, K(𝑠′) ∧ 𝑠ℎ′ ∈ Tr(𝐶 [𝑠′] , last(𝑠ℎ))} .

The satisfiability of statements that occur in a context is then covered by Definition 4.3. In partic-
ular, for sequential contexts as defined above, we have Tr(𝑠@𝐶, 𝜎) = Tr(𝐶 [𝑠] , 𝜎) for any 𝜎 , and
consequently

𝜎 |= [𝑠 @ 𝐶]𝜙 ⇐⇒ 𝜎 |= [𝐶 [𝑠]]𝜙 .

It is further interesting to define contextual trace equivalence, i.e., the conditions under which two
statements have the same trace sets in all contexts. There is a locality to local evaluation in the
sense that local evaluation generates subtraces in the trace semantics. For sequential contexts,
contextual trace equivalence reduces to trace equivalence, as expressed by the following lemma:

Lemma 4.5. Let 𝑠1, 𝑠2 be programs, 𝜎 a state and 𝐶 a context. If Tr(𝑠1, 𝜎) = Tr(𝑠2, 𝜎), then
Tr(𝐶 [𝑠1], 𝜎) = Tr(𝐶 [𝑠2], 𝜎).

Proof. The proof is by cases over contexts.
Case Empty Context. Then 𝐶 = •, so Tr(𝐶 [𝑠1], 𝜎) = Tr(𝑠1, 𝜎) = Tr(𝑠2, 𝜎) = Tr(𝐶 [𝑠2], 𝜎).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:17

Case Non-Empty Context. Then𝐶 = •; 𝑠 for some statement 𝑠 . We need to show that Tr(𝑠1; 𝑠, 𝜎) =
Tr(𝑠2; 𝑠, 𝜎). Consider an arbitrary trace 𝑠ℎ ∈ Tr(𝑠1; 𝑠, 𝜎). There are two subcases, depending on
whether the initial segment 𝑠ℎ1 ∈ Tr(𝑠1, 𝜎) is finite or not.

Subcase 1. 𝑠ℎ1 is finite. Since 𝑠ℎ1 ∈ Tr(𝑠1, 𝜎), we know that ⟨𝜎⟩,K(𝑠1)
∗→ 𝑠ℎ1,K(). It follows

from Equations (10) and (14) that ⟨𝜎⟩,K(𝑠1; 𝑠)
∗→ 𝑠ℎ1,K(𝑠). Let 𝑠ℎ

′ ∈ Tr(𝑠, last(𝑠ℎ)) such that
𝑠ℎ = 𝑠ℎ1 ∗∗ 𝑠ℎ

′. Since 𝑠ℎ1 ∈ Tr(𝑠2, 𝜎), we similarly have ⟨𝜎⟩,K(𝑠2; 𝑠)
∗→ 𝑠ℎ1,K(𝑠), and consequently

𝑠ℎ ∈ Tr(𝑠2; 𝑠, 𝜎)
Subcase 2. 𝑠ℎ1 is infinite. Then 𝑠ℎ1 is the limit of the reduction sequence obtained by applying

Equation (14) to ⟨𝜎⟩,K(𝑠1), which never reaches an empty continuation. It follows that 𝑠ℎ1 is also a
limit of the reduction sequence obtained from ⟨𝜎⟩,K(𝑠1; 𝑠), so 𝑠ℎ1 = 𝑠ℎ. Consequently, 𝑠ℎ ∈ Tr(𝑠2, 𝜎),
and we similarly have that 𝑠ℎ ∈ Tr(𝑠2; 𝑠, 𝜎). □

We denote by ⊢ 𝜓 ⇒ 𝜏 [s @ 𝐶] 𝜙 that the DL sequent 𝜓 ⇒ 𝜏 [s @ 𝐶] 𝜙 can be derived in the
proof system, and elide the topmost context • in sequents to simplify notation; i.e., we write
𝜓 ⇒ 𝜏 [s] 𝜙 instead of𝜓 ⇒ 𝜏 [s @ •] 𝜙 . To prove that a postcondition Post holds after termination
of program 𝑠 under a precondition Pre, it is sufficient to derive the sequent

Pre⇒ ⟨𝜎∗⟩ [s] Post ,

𝑠 is analysed in the topmost context and 𝜎∗ (𝑥) ↦→ ∗ for all 𝑥 ∈ Var . By construction, the only
symbolic variables that occur in a well-formed symbolic trace 𝜏 are introduced in the initial state
of 𝜏 . Thus, all path conditions are expressed in terms of the initial symbolic state 𝜎∗.

The proof rules for statements with contexts are given in Figure 3. To make the correspondence
with the semantics ofWHILE more immediate, we represent path conditions as a separate set in
the antecedent of the sequents. Observe that this rule set is incomplete as it leaves open how a
sequent of the form Γ, 𝑝𝑐 ⇒ 𝜏 𝜙 should be derived, where 𝜙 is a first-order formula. For generality,
we do not commit to a specific representation of symbolic traces and how they are applied to
first-order formulas. For example, if symbolic traces are represented with updates, then the rules
in [4, Ch. 2] can be used. Another source of incompleteness is the lack of a loop invariant rule.
A proof system with rules for updates as well as loop invariants based on a LAGC semantics
for a sequential language with loops and recursive procedures is contained in [20]. It requires a
non-trivial amount of technical machinery which is why we refrain from copying it here.

In the soundness proof below we assume that there is a sound calculus able to derive Γ, 𝑝𝑐 ⇒ 𝜏 𝜙

for first-order formulas 𝜙 .

Theorem 4.6 (Soundness). Let 𝜏 be a well-formed symbolic trace and let 𝜙, 𝜓 be DL formulas. If
⊢ 𝜓 ⇒ 𝜏 𝜙 , then |= 𝜓 ⇒ 𝜏 𝜙 .

Proof. The proof is by induction over the derivation of ⊢ 𝜓 ⇒ 𝜏 𝜙 , with one case for each proof
rule, and makes use of Lemma 4.5 for finite traces. We assume the soundness of first-order (or
“program-free”) formulas; i.e., if ⊢ 𝜙 then |= 𝜙 for any first-order formula 𝜙 .
Case Empty. Assume ⊢ 𝜓 ⇒ 𝜏 [skip] 𝜙 . By rule Empty, we get ⊢ 𝜓 ⇒ 𝜏 𝜙 . We proceed by cases
over 𝜙 .

Subcase 1. 𝜙 is a first-order formula. Then, by assumption, |= 𝜓 ⇒ 𝜏 𝜙 , which means that for any
concretisation mapping 𝜌 , if first(𝜌 (𝜏)) |= 𝜓 , then last(𝜌 (𝜏)) |= 𝜙 . The latter is, by Definition 4.3,
equivalent to last(𝜌 (𝜏)) |= [skip] 𝜙 . Since 𝜌 was arbitrary, this yields |= 𝜓 ⇒ 𝜏 [skip] 𝜙 .

Subcase 2. 𝜙 is not first-order formula. In this case, 𝜙 can be any DL formula. Then, |= 𝜓 ⇒ 𝜏 𝜙

follows from the induction hypothesis (hereafter, IH), and the rest of the proof is analogous to
Subcase 1.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:18 C. C. Din et al.

(Empty)
Γ, 𝑝𝑐 ⇒ 𝜏 𝜙

Γ, 𝑝𝑐 ⇒ 𝜏 [skip] 𝜙

(While)
Γ, 𝑝𝑐 ⇒ 𝜏 [(if 𝑒 {𝑠;while 𝑒 {𝑠}}) @ 𝐶] 𝜙

Γ, 𝑝𝑐 ⇒ 𝜏 [while 𝑒 {𝑠} @ 𝐶] 𝜙

(Assign)
last(𝜏) = 𝜎

𝜎 ′ = 𝜎 [𝑥 ↦→ val𝜎 (𝑒)]
Γ, 𝑝𝑐 ⇒ 𝜏 ↷ 𝜎 ′ [𝐶 [skip]] 𝜙
Γ, 𝑝𝑐 ⇒ 𝜏 [𝑥 := 𝑒 @ 𝐶] 𝜙

(Cond)
last(𝜏) = 𝜎

Γ, 𝑝𝑐 ∪ {val𝜎 (𝑒) = tt} ⇒ 𝜏 [𝐶 [𝑠]] 𝜙
Γ, 𝑝𝑐 ∪ {val𝜎 (𝑒) = ff} ⇒ 𝜏 [𝐶 [skip]] 𝜙

Γ, 𝑝𝑐 ⇒ 𝜏 [if 𝑒 {𝑠} @ 𝐶] 𝜙

(Skip)
𝐶 ≠ •

Γ, 𝑝𝑐 ⇒ 𝜏 [𝐶 [skip]]] 𝜙
Γ, 𝑝𝑐 ⇒ 𝜏 [skip@ 𝐶] 𝜙

(Seq1)
Γ, 𝑝𝑐 ⇒ 𝜏 [𝑠 @ 𝐶]] 𝜙

Γ, 𝑝𝑐 ⇒ 𝜏 [skip; 𝑠 @ 𝐶] 𝜙

(Seq2)
𝑠1 ≠ skip

Γ, 𝑝𝑐 ⇒ 𝜏 [𝑠1 @ 𝐶 [•; 𝑠2]] 𝜙
Γ, 𝑝𝑐 ⇒ 𝜏 [𝑠1; 𝑠2 @ 𝐶] 𝜙

Fig. 3. Dynamic logic sequent calculus for WHILE.

CaseWhile. This case follows from the case forCond. Assume that ⊢ 𝜓 ⇒ 𝜏 [while 𝑒 { 𝑠 } @ 𝐶] 𝜙 .
By rule While, we get ⊢ 𝜓 ⇒ 𝜏 [if e { 𝑠;while 𝑒 { 𝑠 }} @ 𝐶] 𝜙 . Then, by IH we have |= 𝜓 ⇒
𝜏 [if e { 𝑠;while 𝑒 { 𝑠 }} @ 𝐶] 𝜙 . Let last(𝜏) = 𝜎 . For any concretisation mapping 𝜌 and any 𝑠ℎ ∈
Tr(𝐶 [if e { 𝑠;while 𝑒 { 𝑠 }}] , 𝜌 (𝜎)), if first(𝜌 (𝜏) ∗∗ 𝑠ℎ) |= 𝜓 then last(𝜌 (𝜏) ∗∗ 𝑠ℎ) |= 𝜙 . By Equa-
tion (9) and Lemma 4.5, we have Tr(𝐶 [while 𝑒 { 𝑠 }] , 𝜌 (𝜎)) = Tr(𝐶 [if e { 𝑠;while 𝑒 { 𝑠 }}] , 𝜌 (𝜎)).
Therefore 𝜌 (𝜎) |= [while 𝑒 { 𝑠 } @ 𝐶] 𝜙 and, since 𝜌 was arbitrary, it follows that |= 𝜓 ⇒
𝜏 [while 𝑒 { 𝑠 } @ 𝐶] 𝜙 .
CaseAssign. Assume ⊢ 𝜓 ⇒ 𝜏 [𝑥 := 𝑒 @ 𝐶] 𝜙 . By ruleAssign, we get ⊢ 𝜓 ⇒ 𝜏 ↷ 𝜎 ′ [𝐶 [skip]] 𝜙
where last(𝜏) = 𝜎 and 𝜎 ′ = 𝜎 [𝑥 ↦→ val𝜎 (𝑒)]. By IH we have |= 𝜓 ⇒ 𝜏 ↷ 𝜎 ′ [𝐶 [skip]] 𝜙 . Hence,
for any concretisation mapping 𝜌 , if first(𝜌 (𝜏 ↷ 𝜎 ′)) |= 𝜓 , then last(𝜌 (𝜏 ↷ 𝜎 ′)) |= [𝐶 [skip]] 𝜙 ,
i.e. 𝜌 (𝜎 ′) |= [𝐶 [skip]] 𝜙 . By Equations (7), (10) and (14), we have Tr(𝑥 := 𝑒 @ 𝐶, 𝜌 (𝜎)) =

{⟨𝜌 (𝜎)⟩ ↷ 𝜌 (𝜎 ′) ∗∗ 𝑠ℎ | 𝑠ℎ ∈ Tr(𝐶 [skip] , 𝜌 (𝜎 ′))}. Therefore, last(𝜌 (𝜏)) |= [𝑥 := 𝑒 @ 𝐶] 𝜙
and, since 𝜌 was arbitrary and first(𝜌 (𝜏 ↷ 𝜎 ′)) = first(𝜌 (𝜏)), we have |= 𝜓 ⇒ 𝜏 [𝑥 := 𝑒 @ 𝐶] 𝜙 .
Case Cond. Assume ⊢ 𝜓 ⇒ 𝜏 [if e {s} @ 𝐶] 𝜙 . By rule Cond, we get ⊢ 𝜓, val𝜎 (𝑒) = ff ⇒
𝜏 [𝐶 [skip]] 𝜙 and ⊢ 𝜓, val𝜎 (𝑒) = tt⇒ 𝜏 [𝐶 [𝑠]] 𝜙 , where last(𝜏) = 𝜎 . Correspondingly, we have
two induction hypotheses: |= 𝜓, val𝜎 (𝑒) = ff ⇒ 𝜏 [𝐶 [skip]] 𝜙 (hereafter, IH1) and |= 𝜓, val𝜎 (𝑒) =
tt⇒ 𝜏 [𝐶 [𝑠]] 𝜙 (hereafter, IH2). Let 𝜌 be any concretisation mapping and assume first(𝜌 (𝜏)) |= 𝜓 .
Depending on the value of val𝜌 (𝜎) (𝑒), exactly one of the subcases applies.
Subcase IH1. We can assume val𝜌 (𝜎) (𝑒) = ff and, by IH1, |= 𝜓, val𝜎 (𝑒) = ff ⇒ 𝜏 [𝐶 [skip]] 𝜙 ,

which together gives last(𝜌 (𝜏)) |= [𝐶 [skip]] 𝜙 . By definition, 𝑠ℎ |= [𝐶 [skip]] 𝜙 for all fi-
nite 𝑠ℎ ∈ Tr(𝐶 [skip] , last(𝜌 (𝜏))). By Equations (8), (10) and (14) and Lemma 4.5, we have
Tr(𝐶 [skip] , 𝜌 (𝜎)) = Tr(𝐶 [if e {s}] , 𝜌 (𝜎)), observing that the path condition is consistent.
Therefore, 𝑠ℎ′ |= [𝐶 [if e {s}]] 𝜙 for all finite 𝑠ℎ′ ∈ Tr(𝐶 [if e {s}] , last(𝜌 (𝜏))) and so |= 𝜓 ⇒
𝜏 [𝐶 [if e {s}]] 𝜙 , which is equivalent to |= 𝜓 ⇒ 𝜏 [if e {s} @ 𝐶] 𝜙 .

Subcase IH2. We can assume val𝜌 (𝜎) (𝑒) = tt and proceed by a completely analogous argument
as in the other subcase.
Case Skip. By the definition of satisfiability for statements in contexts.
Case Seq1. Assume ⊢ 𝜓 ⇒ 𝜏 [skip; 𝑠 @ 𝐶] 𝜙 . By rule Seq1, we get ⊢ 𝜓 ⇒ 𝜏 [𝑠 @ 𝐶] 𝜙 , and by
IH we have |= 𝜓 ⇒ 𝜏 [𝑠 @ 𝐶] 𝜙 . Hence, for any concretisation mapping 𝜌 , if first(𝜌 (𝜏)) |= 𝜓 ,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:19

then last(𝜌 (𝜏)) |= [𝐶 [𝑠]] 𝜙 . Then 𝑠ℎ |= [skip] 𝜙 for all finite 𝑠ℎ ∈ Tr(𝐶 [𝑠] , last(𝜌 (𝜏))). By
Equations (6), (10) and (14) and Lemma 4.5, we have Tr(𝐶 [𝑠] , 𝜌 (𝜎)) = Tr(𝐶 [skip; 𝑠] , 𝜌 (𝜎)) for
any 𝜎 . Therefore, for all finite 𝑠ℎ′ ∈ Tr(𝐶 [skip; 𝑠] , last(𝜌 (𝜏))) we have 𝑠ℎ′ |= [skip] 𝜙 , and it
follows that |= 𝜓 ⇒ 𝜏 [skip; 𝑠 @ 𝐶] 𝜙 .
Case Seq2. By the definition of satisfiability for statements in contexts. □

5 SEMANTICS FOR A SHARED-VARIABLE PARALLEL PROGRAMMING LANGUAGE

In this and the following section we show that the LAGC semantics naturally extends to cover
advanced language constructs. We gradually extendWHILE with parallel programming constructs:
parallel execution, procedure calls, distributed memory, dynamic process creation, and communica-
tion between procedures. To cater for interleaved execution of parallel instructions, and to allow
for the compositional definition of semantics, the traces of the sequential language are gradually
unfolded by means of continuations.

5.1 Local Parallelism

We extendWHILE with a statement for parallel execution, such that the syntax for statements from
Figure 2 becomes:

𝑠 ∈ Stmt ::= co 𝑠 | | 𝑠 oc |

The semantics of this statement consists in interleaving the evaluation of the two parallel branches
at the granularity of atomic statements, as exemplified below.

Example 5.1. The execution of the program 𝑠𝑐𝑜 = co 𝑥 := 1; 𝑦 := 𝑥 + 1 | | 𝑥 := 2 oc produces
one of three possible traces that correspond to the traces of the following sequential programs:
𝑥 := 1; 𝑦 := 𝑥 + 1; 𝑥 := 2, or 𝑥 := 1; 𝑥 := 2; 𝑦 := 𝑥 + 1, or 𝑥 := 2; 𝑥 := 1; 𝑦 := 𝑥 + 1.

5.1.1 Local Evaluation. The evaluation rule for the parallel execution statement co 𝑟 | | 𝑠 oc
branches on the statement which first gets to execute, resulting in two sets of traces where the first
set contains traces with the path condition of 𝑟 and the continuation of 𝑟 in parallel with 𝑠 and the
second set contains traces with the path condition of 𝑠 and the continuation of 𝑠 in parallel with r.
The valuation rule is formalised as follows:

val𝜎 (co 𝑟 | | 𝑠 oc) = {𝑝𝑐𝑟 ⊲𝜏𝑟 · K(co 𝑟 ′ | | 𝑠 oc) |𝑝𝑐𝑟 ⊲𝜏𝑟 · K(𝑟 ′) ∈val𝜎 (𝑟)}
∪{𝑝𝑐𝑠 ⊲𝜏𝑠 · K(co 𝑟 | | 𝑠′ oc) |𝑝𝑐𝑠 ⊲𝜏𝑠 · K(𝑠′) ∈val𝜎 (𝑠)} .

(21)

As with sequential composition in rule (10), we need to ensure that empty continuations are
not propagated. To this end we define the following rewrite rule for parallel composition inside
continuations (observe that the case 𝑠 = 𝑠′ = cannot occur due to exhaustive applications of the
rewrite rule (11)):

co 𝑠 | | 𝑠′ oc⇝
{
𝑠′ if 𝑠 = , 𝑠′ ≠
𝑠 if 𝑠 ≠ , 𝑠′ = .

(22)

5.1.2 Trace Composition. The composition rule (14) can be kept unchanged (although the
abstract variant in rule (28) below can be used as well). Its effect is that all combinations of
execution sequences of atomic statements in the parallel branches can be generated. This behaviour
corresponds to the classical interleaving semantics (e.g., [9]), as demonstrated below.

Example 5.2. Parallel execution has skip as a unit of composition; i.e., for any statement 𝑠 and
state 𝜎 , we have Tr(co skip | | 𝑠 oc, 𝜎) = Tr(co 𝑠 | | skip oc, 𝜎) = Tr(𝑠, 𝜎).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:20 C. C. Din et al.

Example 5.3. Consider program 𝑠𝑐𝑜 from Example 5.1, its evaluation is

val𝜎 (𝑠𝑐𝑜) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 1] · K(co 𝑦 := 𝑥 + 1 | | 𝑥 := 2 oc)}∪
{∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 2] · K(co 𝑥 := 1;𝑦 := 𝑥 + 1 | | oc)}

= {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 1] · K(co 𝑦 := 𝑥 + 1 | | 𝑥 := 2 oc)}∪
{∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 2] · K(𝑥 := 1;𝑦 := 𝑥 + 1)} ,

using the following sub-evaluations: val𝜎 (𝑥 := 1;𝑦 := 𝑥 +1) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 1] ·K(𝑦 := 𝑥 +1)}
and val𝜎 (𝑥 := 2) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 2] · K()}. For trace composition, we first need to evaluate
the continuation co 𝑦 := 𝑥 + 1 | | 𝑥 := 2 oc:

val𝜎 (co 𝑦 := 𝑥 + 1 | | 𝑥 := 2 oc) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑦 ↦→ val𝜎 (𝑥 + 1)] · K(co | | 𝑥 := 2 oc)}∪
{∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 2] · K(co 𝑦 := 𝑥 + 1 | | oc)}

= {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑦 ↦→ val𝜎 (𝑥 + 1)] · K(𝑥 := 2)}∪
{∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 2] · K(𝑦 := 𝑥 + 1)} ,

using the following sub-evaluations: val𝜎 (𝑦 := 𝑥 + 1) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑦 ↦→ val𝜎 (𝑥 + 1)] · K()} and
val𝜎 (𝑥 := 2) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 2] · K()}.

To illustrate trace composition, let us consider the trace where statement 𝑥 := 1 is executed
first and explore the remaining possible traces. We start from the state 𝐼𝑐𝑜 . The first application of
rule (14) results in the following concrete trace and continuation:

⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1],K(co 𝑦 := 𝑥 + 1 | | 𝑥 := 2 oc) .

At this point, two different instances of the composition rule are applicable, corresponding to the
two possible interleavings; i.e., there is a choice between the two continuations in val[𝑥 ↦→1] (co 𝑦 :=
𝑥 + 1 | | 𝑥 := 2 oc) as shown above. The first possible instance of the composition rule is:

[𝑥 ↦→ 1] = last(⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1]) ∅ consistent
∅ ⊲ ⟨[𝑥 ↦→ 1]⟩↷ [𝑥 ↦→ 1] [𝑦 ↦→ val[𝑥 ↦→1] (𝑥 + 1)] · K(𝑥 := 2)
∈ val[𝑥 ↦→1] (co 𝑦 := 𝑥 + 1 | | 𝑥 := 2 oc)

⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1],K(co 𝑦 := 𝑥 + 1 | | 𝑥 := 2 oc) →
⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 1, 𝑦 ↦→ 2],K(𝑥 := 2)

(23)

One further rule application is possible, which results in the final step:

⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 1, 𝑦 ↦→ 2],K(𝑥 := 2) →
⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 1, 𝑦 ↦→ 2] ↷ [𝑥 ↦→ 2, 𝑦 ↦→ 2],K() .

The second possible instance of the composition rule is similar and yields:

⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 2],K(𝑦 := 𝑥 + 1) →
⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 2] ↷ [𝑥 ↦→ 2, 𝑦 ↦→ 3],K() .

The third possible trace is obtained analogously by starting with the second branch. After this,
only one continuation is possible. Altogether, the following traces are obtained:

Tr(𝑠𝑐𝑜 , 𝐼𝑐𝑜) = { ⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 1, 𝑦 ↦→ 2] ↷ [𝑥 ↦→ 2, 𝑦 ↦→ 2],
⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 2] ↷ [𝑥 ↦→ 2, 𝑦 ↦→ 3],
⟨𝐼𝑐𝑜⟩↷ [𝑥 ↦→ 2] ↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 1, 𝑦 ↦→ 2] } .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:21

(Par)
𝑠1 ≠ skip 𝑠2 ≠ skip

Γ, 𝑝𝑐 ⇒ 𝜏 [𝑠1 @ 𝐶 [co • || 𝑠2 oc]] 𝜙
Γ, 𝑝𝑐 ⇒ 𝜏 [𝑠2 @ 𝐶 [co 𝑠1 | | • oc]] 𝜙
Γ, 𝑝𝑐 ⇒ 𝜏 [co 𝑠1 | | 𝑠2 oc@ 𝐶] 𝜙

(Par-Skip1)
Γ, 𝑝𝑐 ⇒ 𝜏 [𝐶 [𝑠]] 𝜙

Γ, 𝑝𝑐 ⇒ 𝜏 [co skip | | 𝑠 oc@ 𝐶] 𝜙

(Par-Skip2)
Γ, 𝑝𝑐 ⇒ 𝜏 [𝐶 [𝑠]] 𝜙

Γ, 𝑝𝑐 ⇒ 𝜏 [co 𝑠 | | skip oc@ 𝐶] 𝜙

Fig. 4. Dynamic logic sequent calculus for local parallelism.

5.1.3 Calculus. We extend our syntax with parallel composition contexts for local parallelism:

𝐶 ∈ Context ::= co 𝐶 | | 𝑠 oc | co 𝑠 | | 𝐶 oc | · · ·

The corresponding proof rules, given in Figure 4, allow us to recursively unfold parallel compositions
by exploiting the focus and context formulation of programs in the proof rules. For example, rule
Cond (see Figure 3) pushes the if-statement 𝑠 back into the hole, which makes if-statements
non-atomic for parallel contexts and permits interleaving.

Example 5.4. We show how rule Par recursively unfolds parallel composition. Assume that the
statements 𝑠1, 𝑠2 and 𝑠3 are not skip. Applying Par to the sequent

𝜓 ⇒ 𝜏 [co co 𝑠1 | | 𝑠2 oc | | 𝑠3 oc] 𝜙,

we obtain the premises

𝜓 ⇒ 𝜏 [co 𝑠1 | | 𝑠2 oc@ co • || 𝑠3 oc] 𝜙
𝜓 ⇒ 𝜏 [𝑠3 @ co co 𝑠1 | | 𝑠2 oc | | • oc] 𝜙

By applying rule Par again to the first premise, we obtain the premises

𝜓 ⇒ 𝜏 [𝑠1 @ co co • || 𝑠2 oc | | 𝑠3 oc] 𝜙
𝜓 ⇒ 𝜏 [𝑠2 @ co co 𝑠1 | | • oc | | 𝑠3 oc] 𝜙

When 𝑠1 is analysed, the “rest” of the statement will be pushed back into the hole, so it can be
interleaved with 𝑠2 and 𝑠3.

In contrast to sequential contexts, where we have Tr(𝑠 @ 𝐶, 𝜎) = Tr(𝐶 [𝑠] , 𝜎) for any state 𝜎 ,
parallel contexts merely ensure Tr(𝑠 @ 𝐶, 𝜎) ⊆ Tr(𝐶 [𝑠] , 𝜎). However, the premises of Par, Par-
Skip1 and Par-Skip2 cover all the traces; e.g., Tr(𝑠1 @ co • || 𝑠2 co, 𝜎) ∪ Tr(𝑠2 @ co 𝑠1 | | • co, 𝜎) =
Tr(co 𝑠1 | | 𝑠2 co, 𝜎) for any 𝜎 . We need to adapt the notion of contextual trace equivalence and
Lemma 4.5 to statements that have the same trace sets modulo interleaving. The soundness argument
for the proof rules for local parallelism, relative to the LAGC semantics, is then similar to the proof
of Theorem 4.6, but the rules are impractical because they quickly lead to path explosion. Several
approaches to mitigate this effect have been proposed in the literature (e.g., [11, 38, 75, 76]).

5.2 Atomic

We extendWHILE with atomic blocks to control interleaving in the execution of parallel statements,
such that the syntax for statements from Figure 2 becomes

𝑠 ∈ Stmt ::= co 𝑠 | | 𝑠 oc | atomic(𝑠𝑡) | . . . ,

where 𝑠𝑡 is a statement without while loops (this design choice is discussed below).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:22 C. C. Din et al.

5.2.1 Local Evaluation. The atomic statement protects its argument against interleaving com-
putations from other branches of a parallel execution operator. A (loop-free) statement 𝑠𝑡 can
be made to execute atomically, i.e. without preemption, written atomic(𝑠𝑡). Atomic execution
requires interleaving points to be removed during trace composition.

val𝜎 (atomic(𝑠𝑡)) = {𝑝𝑐1 ∪ 𝑝𝑐2 ⊲ 𝜏1 ∗∗ 𝜏2 · K() | 𝑝𝑐1 ⊲ 𝜏1 · K(𝑠𝑡 ′) ∈ val𝜎 (𝑠𝑡) ∧ 𝑠𝑡 ′ ≠ ∧
𝑝𝑐2 ⊲ 𝜏2 · K() ∈ val𝜎 ′ (atomic(𝑠𝑡 ′)) ∧ 𝜎 ′ = last(𝜏1)} ∪

{𝑝𝑐 ⊲ 𝜏 · K() | 𝑝𝑐 ⊲ 𝜏 · K() ∈ val𝜎 (𝑠𝑡)}
(24)

The main idea behind rule (24) is to recursively unfold the execution of its atomic argument 𝑠𝑡 ,
while removing continuation markers. During trace composition, this will prevent the atomic
code from being interleaved. The rule has two cases, depending on whether the evaluation of 𝑠𝑡
contains a non-empty continuation or not: if the continuation is not empty, we need to evaluate it
immediately, as the execution cannot be interrupted before the end of the atomic statement. Note
the structural similarity in the definition of the first trace set above and the composition rule (14).
The difference is that the consistency check and concretisation are deferred until the actual trace
composition.

Discussion. In this execution model, the semantics val𝜎 of non-terminating atomic statements
is undefined, which is the reason for excluding loops. This is a design choice and not a principal
limitation: It is possible to define the semantics of non-terminating atomic programs with suitable
scheduling events that allow to process non-terminating code piece-wise [32]. However, that
approach is more complex than the adopted solution and breaks with the modularity we aim at
with only one rule per syntactic construct. A different solution is to equip atomic with a path
condition argument (using 𝑝𝑐1 in the recursive call) and only keep consistent traces. When 𝜎 is
concrete, this would suffice for terminating loops. Finally, one could define traces co-inductively
and use them to specify non-terminating loops. This is attempted in [19], but a highly complex
loop invariant rule was obtained already for the sequentialWHILE language. The extension of the
present setting to a co-inductive semantics and calculus is a major undertaking.
Another solution, presented in Section 7.3 below, is to define a trace composition rule, where

atomic execution of any statement is the default and can be interrupted only at explicit suspension
points.
Observe that the semantics of non-terminating non-atomic programs is well-defined: infinite

traces are produced by an infinite number of applications of the composition rule.

5.2.2 Trace Composition. The trace composition rule (14) is unchanged, but it is worthwhile
to observe how it works in the presence of atomic. When rule (14) processes a continuation of
the form atomic(𝑠𝑡), it needs to evaluate val𝜎 (atomic(𝑠𝑡)) for the concrete state 𝜎 = last(𝑠ℎ).
Rule (24) evaluates 𝑠 until it reaches a continuation 𝑠′, then recursively evaluates 𝑠′, until 𝑠 is
completely executed. No interleaving can occur during the evaluation, which reflects the intended
semantics of atomic statements.

Example 5.5. To illustrate the evaluation of interleaved execution with atomic, we modify
Example 5.3 as follows: let 𝑠𝑎𝑡 = co atomic(𝑥 := 1;𝑦 := 𝑥 +1) | | 𝑥 := 2 oc. The evaluation branches
into either atomic(𝑥 := 1;𝑦 := 𝑥 +1) and then 𝑥 := 2, or 𝑥 := 2 and then atomic(𝑥 := 1;𝑦 := 𝑥 +1).
In either case, the final value of 𝑦 is 2, as shown in the following evaluation:

val𝜎 (𝑠𝑎𝑡) ={∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 1] [𝑦 ↦→ val𝜎 [𝑥 ↦→1] (𝑥 + 1)] · K(𝑥 := 2)} ∪
{∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ 2] · K(atomic(𝑥 := 1;𝑦 := 𝑥 + 1))} .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:23

Now the trace in which 𝑦 has the final value 3, is no longer produced; starting from state 𝐼𝑎𝑡 = 𝐼𝑐𝑜
we have Tr(𝑠𝑎𝑡 , 𝐼𝑎𝑡) = {⟨𝐼𝑎𝑡 ⟩ ↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 1, 𝑦 ↦→ 2] ↷ [𝑥 ↦→ 2, 𝑦 ↦→ 2], ⟨𝐼𝑎𝑡 ⟩ ↷ [𝑥 ↦→
2] ↷ [𝑥 ↦→ 1] ↷ [𝑥 ↦→ 1, 𝑦 ↦→ 2]}.

5.2.3 Calculus. The rule for atomic is remarkably simple, because of the explicit contexts.
Rule Atomic keeps the entire atomic statement 𝑠 in focus, but changes from an outermost context
which may be parallel to a sequential context, thereby enforcing sequential execution of the atomic
statement.

(Atomic)
Γ, 𝑝𝑐 ⇒ 𝜏 [𝑠 @ •;𝐶 [skip]] 𝜙
Γ, 𝑝𝑐 ⇒ 𝜏 [atomic(𝑠) @ 𝐶] 𝜙

5.3 Local Memory

We extendWHILE with local variable declarations by introducing a syntactic category of variable
declarations VarDecl and add blocks to the syntax for statements from Figure 2:

𝑠 ∈ Stmt ::= { 𝑑 𝑠 } | . . .
𝑑 ∈ VarDecl ::= 𝜀 | 𝑥 ; 𝑑

For simplicity, we omit an empty list of variable declarations in a scope { 𝜀 𝑠 } and just write { 𝑠 }.

5.3.1 Local Evaluation. A block { 𝑑 𝑠 } introduces a local variable scope such that the program
variables 𝑑 should only be accessible for the statement 𝑠 . To avoid interference among variable
declarations in different scopes, possibly introducing the same variable name, the evaluation rule
renames the variables in 𝑑 to unused names and adds the renamed program variables to the state.
The local program variables are correspondingly renamed in 𝑠 . The local evaluation rules cover a
non-empty and empty list of local variable declarations, respectively.

val𝜎 ({ 𝑥 ;𝑑 𝑠 }) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ′ ↦→ 0] · K({ 𝑑 𝑠 [𝑥 ← 𝑥 ′] }) | 𝑥 ′ ∉ dom(𝜎)} (25)

val𝜎 ({ 𝑠 }) = val𝜎 (𝑠) (26)

Here, 𝑠 [𝑥←𝑥 ′] denotes the textual substitution of program variable 𝑥 by 𝑥 ′ in the statement 𝑠 .

5.3.2 Trace Composition. Trace composition in rule (14) is unchanged. It will gradually extend
the state with fresh variables, bound to the default value 0, until the local variable declarations of
the scope have been reduced to an empty list, at which point the scope is removed and execution
can continue as normal.

5.3.3 Calculus. The rules are straightforward. We model initialisation by an assignment to the
default value, for which a rule already exists. To avoid name clashes for multiple local variables
with the same variable names, these are replaced by fresh names, mimicking the LAGC semantics.
The occurrences of local variables in the post-condition are similarly renamed (which suggests
how the calculus could be extended with method contracts by adding an additional conjunct to the
postcondition 𝜙 ′ in the premise).

(local1)
𝑥 ′ fresh 𝑠′ = 𝑠 [𝑥 ← 𝑥 ′] 𝜙 ′ = 𝜙 [𝑥/𝑥 ′]

Γ, 𝑝𝑐 ⇒ 𝜏 [𝑥 ′ := 0 @ 𝐶 [•; {𝑑 𝑠′}]] 𝜙 ′
Γ, 𝑝𝑐 ⇒ 𝜏 [{𝑥 ;𝑑 𝑠} @ 𝐶] 𝜙

(local2)
Γ, 𝑝𝑐 ⇒ 𝜏 [𝐶 [𝑠]] 𝜙

Γ, 𝑝𝑐 ⇒ 𝜏 [{𝑠} @ 𝐶] 𝜙

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:24 C. C. Din et al.

𝑃 ∈ Prog ::=𝑀 {𝑠}
𝑀 ∈ Meth ::=𝑚(𝑥){𝑠}
𝑠 ∈ Stmt ::= skip | 𝑥 := 𝑒 | if 𝑒 { 𝑠 } | 𝑠; 𝑠 | while 𝑒 { 𝑠 }

| co 𝑠 | | 𝑠 oc | atomic(𝑠) | call(𝑚, 𝑒)

Fig. 5. Program Syntax with Procedure Calls.

5.4 Introducing Events and Symbolic Traces

Symbolic traces can contain states in which variables may be bound to unknown values. A simple
case where this become necessary is whenWHILE is extended with a statement to express user
input, such that the syntax for statements from Figure 2 becomes

𝑠 ∈ Stmt ::= input(𝑥) |

For the input-statement, Proposition 3.2 does not hold, because we do not know the value of
the user input 𝑥 when locally evaluating the statement. To represent these unknown values in
the local semantics, we use symbolic variables introduced in Definition 2.3. Events can be used to
introduce a point of interaction; we define an event type inpEv(𝑌) that captures the introduction
of a symbolic variable 𝑌 by an input-statement. The local evaluation rule for input(𝑥) can be
formalised as follows:

val𝜎 (input(𝑥)) = {∅ ⊲ inpEv{𝑌 }𝜎 (𝑌) ↷ 𝜎 [𝑌 ↦→ ∗] [𝑥 ↦→ 𝑌] · K() | 𝑌 ∉ dom(𝜎)} . (27)

The trace is well-formed, because the variable 𝑌 inside the event is symbolic.
The composition rule accommodates Proposition 3.2 by using a concretisation mapping to

concretise the emitted trace. Concretisation captures the actual user input when the statement is
executed in a concrete trace.

𝜎 = last(𝑠ℎ) 𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝜎 (𝑠) 𝜌 concretises 𝜏 𝜌 (𝑝𝑐) consistent

𝑠ℎ,K(𝑠) → 𝑠ℎ ∗∗ 𝜌 (𝜏),K(𝑠′)
(28)

The concretisation mapping 𝜌 ensures that the resulting trace 𝑠ℎ ∗∗ 𝜌 (𝜏) is concrete.
The previous composition rule (14) is a special case of this one, when all the states are concrete

(this follows from Proposition 2.26).

Example 5.6. Tr(input(𝑥), 𝐼𝑠𝑒𝑞) = {⟨𝐼𝑠𝑒𝑞⟩ ∗∗ inpEv{𝑌 }𝜎 (𝑌) ↷ 𝜎 [𝑌 ↦→ 𝑣] [𝑥 ↦→ 𝑣] | 𝑣 ∈ Val} =
{⟨𝐼𝑠𝑒𝑞⟩ ↷ inpEv(𝑣) ↷ 𝐼𝑠𝑒𝑞 [𝑌 ↦→ 𝑣] ↷ 𝐼𝑠𝑒𝑞 [𝑌 ↦→ 𝑣, 𝑥 ↦→ 𝑣] | 𝑣 ∈ Val}. All possible values 𝑣 may
occur as an input. Variable 𝑌 has a concrete value now; 𝑥, 𝑌 are needed to propagate the input
value correctly, for example, in subsequent code of the form “if (𝑥 > 0) then ...”.

Calculus. The calculus rule directly follows the local evaluation rule (27) by introducing a fresh
variable 𝑌 to model the unknown user input. By definition we have 𝜎∗ (𝑌) = ∗, so we do not need
this assignment.

(Input)
last(𝜏) = 𝜎 𝑌 fresh

Γ, 𝑝𝑐 ⇒ 𝜏 ∗∗ inpEv{𝑌 }𝜎 (𝑌) [𝑥 := 𝑌 @ 𝐶] 𝜙
Γ, 𝑝𝑐 ⇒ 𝜏 [input(𝑥) @ 𝐶] 𝜙

Interestingly, the abstract composition rule (28) has no effect on the calculus, which is already
symbolic, but the soundness proof needs to be adapted.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:25

5.5 Procedure Calls

Figure 5 introduces procedure6 calls with the statement call(𝑚, 𝑒): A program is a set of method
declarations𝑀 with main block {𝑠}. We consider𝑀 to be a method table that is implicitly provided
with a program. Each method declaration associates a unique name𝑚 with the statement in its
body. To reduce technicalities, we assume without loss of generality that a method call has one
argument and no return value on which the caller needs to synchronise.7

In contrast to parallel co 𝑠 | | 𝑠 oc statements, where parallelism is explicit in the program syntax,
procedure calls introduce implicit parallel execution: there is a context switch between the syntactic
call site and the processor, whereupon the call is executed in parallel. This decoupling has an
important consequence: according to the local evaluation principle, method bodies are evaluated
independently of the call context. This necessitates a new composition rule that starts the execution
of a called method. We also need to ensure that a method is not executed before it is called, requiring
the introduction of suitable events.

5.5.1 Local Evaluation. The new events are invEv(𝑚, val𝜎 (𝑒)) and invREv(𝑚, val𝜎 (𝑒)) for a given
state 𝜎 . These events denote the invocation and the activation (also called the invocation reaction)
of a method𝑚 with argument 𝑒 , respectively. Recall from Section 2.3 that events inserted into a
trace at a state 𝜎 are preceded and succeeded by that state. The local evaluation rule (29) for a call
to𝑚 with argument 𝑒 has an empty path condition, inserts an invocation event invEv (𝑚, val𝜎 (𝑒))
into the trace, and continues with the empty continuation. This means that the call is non-blocking:
the code following the call could be executed immediately, if scheduled. The rule is formalised as
follows:

val𝜎 (call(𝑚, 𝑒)) = {∅ ⊲ invEv𝜎 (𝑚, val𝜎 (𝑒)) · K()} . (29)

5.5.2 Trace Composition: Concrete Variant. The concurrency model so far is still very simple:
method invocations and processors are anonymous, there is no way to distinguish between two
calls to the same method: these execute identical code and all executions can be interleaved. For
this reason, it is sufficient to represent continuation candidates for the next execution step as a
multiset 𝑞. We denote with “+” the disjoint multiset union. We add a rewrite rule to simplify empty
continuations in the multisets of tasks; this rule is applied exhaustively when adding tasks in
multisets.

𝑞+{K()}⇝ 𝑞.

The judgment representing trace extension by one step has the form: 𝑠ℎ, 𝑞 → 𝑠ℎ′, 𝑞′ where 𝑞, 𝑞′
are multisets of continuations of the form K(𝑠).

𝜎 = last(𝑠ℎ) 𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝜎 (𝑠) 𝑝𝑐 consistent

𝑠ℎ, 𝑞+{K(𝑠)} → 𝑠ℎ ∗∗ 𝜏, 𝑞+{K(𝑠′)}
(30)

The difference between rule (14) and rule (30) is that we no longer commit to one possible
continuation, because the continuation code is now located in a method. Therefore, the rule selects
and removes one matching continuation from the pool 𝑞, executes it to the next continuation
marker, exactly like rule (14), and then puts the code remaining to be executed back into 𝑞. We also
need a new composition rule that adds method bodies to the pool 𝑞.

𝑚(𝑥){𝑠} ∈ 𝑀 𝜎 = last(𝑠ℎ) wf (𝑠ℎ ∗∗ invREv𝜎 (𝑚, 𝑣)) 𝑦 ∉ dom(𝜎)

𝑠ℎ, 𝑞 → 𝑠ℎ ∗∗ invREv𝜎 (𝑚, 𝑣) ↷ 𝜎 [𝑦 ↦→ 𝑣], 𝑞+{K(𝑠 [𝑥 ← 𝑦])}
(31)

6Historically, it is more common to use the term procedure, whereas in object-oriented programming the term method is
usual, which is where the LAGC concept originated from. We use both terms interchangeably.
7Synchronisation on return values is discussed in Section 7.3.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:26 C. C. Din et al.

The rule handles the creation of a new execution thread. We select a method with body 𝑠 from table
𝑀 and create a new continuation K(𝑠 [𝑥 ← 𝑦]), where the call parameter 𝑥 is substituted with a
fresh variable 𝑦 for disambiguation. The new continuation is added to the pool 𝑞. Next, we need to
record that a new method with argument 𝑣 has started to execute, as a consequence of a previous
method call. The existence of this call is ensured by the premise expressing the well-formedness of
the extended trace, which requires an invocation event of the form invEv (𝑚, 𝑣) to be present in 𝑠ℎ.
We extend the current trace with the invocation reaction event8 invREv𝜎 (𝑚, 𝑣) to mark the start of
method execution and record the extension of the current state in which the parameter 𝑦 has the
value 𝑣 . It remains to formalise well-formedness.

5.5.3 Well-Formedness. A trace is well-formed if its events obey certain ordering restrictions.
Whenever a trace 𝑠ℎ is extended with an invocation reaction event of the form invREv (𝑚, 𝑣),
there must be a corresponding invocation event invEv (𝑚, 𝑣) in 𝑠ℎ. This ordering restriction can be
captured by counting the number of occurrences of both event forms in 𝑠ℎ using the comprehension
expression #𝑠ℎ (ev(𝑒)). In all other cases, the trace stays well-formed when it is extended with a
new event. We formalise well-formedness as a predicate on traces.

Definition 5.7 (Well-Formedness). The well-formedness of a concrete trace sh is formalised by a
predicate wf (sh), defined inductively over the length of sh:

wf (𝜀) = 𝑡𝑟𝑢𝑒

wf (𝑠ℎ↷ 𝜎) =wf (𝑠ℎ)
wf (𝑠ℎ↷ invEv (𝑚, 𝑣)) =wf (𝑠ℎ)

wf (𝑠ℎ↷ invREv (𝑚, 𝑣)) =wf (𝑠ℎ) ∧ #𝑠ℎ (invEv (𝑚, 𝑣)) > #𝑠ℎ (invREv (𝑚, 𝑣))

The well-formedness predicate is used in the global composition rules to ensure that only a
valid concrete trace for a given program can be generated during the trace composition. Any trace
emitted by the trace composition rules is well-formed, because it is an invariant established each
time a trace is extended. It is sufficient to define well-formedness on concrete traces, because in the
end it has to hold for them. It follows that well-formedness is always a simple, decidable property.

5.5.4 Global Trace Semantics.

Definition 5.8 (Program Semantics with Procedure Calls). Given a finite program 𝑃 with a method
table𝑀 and a main block 𝑠𝑚𝑎𝑖𝑛 . Let

𝑠ℎ0, 𝑞0 → 𝑠ℎ1, 𝑞1 → · · ·

be a maximal sequence obtained by the repeated application of the composition rules (30)–(31),
starting with ⟨𝐼𝑃 ⟩, {K(𝑠𝑚𝑎𝑖𝑛)}. If the sequence is finite, then it must have the form

⟨𝐼𝑃 ⟩, {K(𝑠𝑚𝑎𝑖𝑛)} → · · · → 𝑠ℎ, ∅ .

If the sequence is infinite9, let 𝑠ℎ = lim𝑖→∞ 𝑠ℎ𝑖 . The set of all such potentially infinite traces 𝑠ℎ is
denoted by Tr(𝑃, 𝐼𝑃).

Example 5.9. Consider the following program 𝑃 :

𝑚(𝑥) {𝑦 := 𝑥 ; 𝑥 := 𝑥 + 1}
{call(𝑚, 1); 𝑧 := 2}

8Recall that invREv𝜎 (𝑚, 𝑣) is a triple with two copies of 𝜎 around invREv (𝑚, 𝑣) .
9Like in the previous cases, the limit is well-defined as traces are always growing along the sequence of concrete traces.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:27

The method table for this program is𝑀 = {𝑚(𝑥) {𝑦 := 𝑥 ; 𝑥 := 𝑥 + 1}}. The evaluation of the main

method is as follows:

val𝜎 (call(𝑚, 1)) = {∅ ⊲ ⟨𝜎⟩↷ invEv (𝑚, 1) ↷ 𝜎 · K()}
val𝜎 (𝑧 := 2) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑧 ↦→ 2] · K()}

val𝜎 (call(𝑚, 1); 𝑧 := 2) = {∅ ⊲ ⟨𝜎⟩↷ invEv (𝑚, 1) ↷ 𝜎 · K(𝑧 := 2)}

To prepare the evaluation of the method body of𝑚(𝑥) (where 𝑥 is any integer):

val𝜎 (𝑦 := 𝑥) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑦 ↦→ val𝜎 (𝑥)] · K()}
val𝜎 (𝑥 := 𝑥 + 1) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑥 ↦→ val𝜎 (𝑥 + 1)] · K()}

val𝜎 (𝑦 := 𝑥 ;𝑥 := 𝑥 + 1) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑦 ↦→ val𝜎 (𝑥)] · K(𝑥 := 𝑥 + 1)}
(32)

Let 𝐼𝑃 be the initial state of 𝑃 . We consider the state where the statement call(𝑚, 1) in main has
already been executed, and explore the possible traces. The concrete trace and the continuation
pool at this point are 𝑠ℎ = ⟨𝐼𝑃 ⟩ ↷ invEv (𝑚, 1) ↷ 𝐼𝑃 and 𝑞 = {K(𝑧 := 2)}, respectively. Let 𝑠𝑚
be the method body of𝑚. Both composition rules (30) and (31) are applicable and yield different
interleavings: the execution continues either with the main method or with the creation of a new
execution thread. In the following, we assume that the execution continues with thread creation,
i.e. we apply rule (31):

𝑚(𝑥){𝑠𝑚} ∈ 𝑀 𝐼𝑃 = last(sh) wf (𝑠ℎ ∗∗ invREv𝐼𝑃 (𝑚, 1)) 𝑤 ∉ dom(𝐼𝑃)

𝑠ℎ, 𝑞 → 𝑠ℎ ∗∗ invREv𝐼𝑃 (𝑚, 1) ↷ [𝑤 ↦→ 1], 𝑞+{K(𝑠𝑚 [𝑥 ← 𝑤])}
(33)

At this point, both composition rules are again applicable, but only rule (30) is useful: since only
one invocation event is present in 𝑠ℎ, well-formedness will not allow more than one instance of𝑚
to execute. We use some abbreviations:

sh′ = 𝑠ℎ ∗∗ invREv𝐼𝑃 (𝑚, 1) ↷ [𝑤 ↦→ 1]
= ⟨𝐼𝑃 ⟩↷ invEv (𝑚, 1) ↷ 𝐼𝑃 ↷ invREv (𝑚, 1) ↷ 𝐼𝑃 ↷ [𝑤 ↦→ 1]

𝑠′𝑚 = {𝑠𝑚 [𝑥 ← 𝑤]} = {𝑦 := 𝑤 ; 𝑤 := 𝑤 + 1}
𝑞′ = 𝑞+{K(𝑠𝑚 [𝑥 ← 𝑤])} = {K(𝑧 := 2),K(𝑦 := 𝑤 ; 𝑤 := 𝑤 + 1)}

The two continuations in 𝑞′ indicate two possible interleavings. We assume execution continues
with the body of𝑚:

[𝑤 ↦→ 1] = last(𝑠ℎ′) ∅ consistent
∅ ⊲ ⟨[𝑤 ↦→ 1]⟩↷ [𝑤 ↦→ 1] [𝑦 ↦→ val[𝑤 ↦→1] (𝑤)] · K(𝑤 := 𝑤 + 1) ∈ val[𝑤 ↦→1] (𝑠′𝑚)

𝑠ℎ′, {K(𝑧 := 2)}+{K(𝑦 := 𝑤 ;𝑤 := 𝑤 + 1)} →
𝑠ℎ′ ∗∗ ⟨[𝑤 ↦→ 1]⟩↷ [𝑤 ↦→ 1, 𝑦 ↦→ 1], {K(𝑧 := 2)}+{K(𝑤 := 𝑤 + 1)}

(34)

where val[𝑤 ↦→1] (𝑠′𝑚) is taken from Equation (32). We introduce the abbreviations:

sh′′ = ⟨𝐼𝑃 ⟩↷ invEv (𝑚, 1) ↷ 𝐼𝑃 ↷ invREv (𝑚, 1) ↷ 𝐼𝑃 ↷ [𝑤 ↦→ 1] ↷ [𝑤 ↦→ 1, 𝑦 ↦→ 1]
𝑞′′ = {K(𝑧 := 2)}+{K(𝑤 := 𝑤 + 1)}

At this point, rule (30) is again applicable and the two continuations in 𝑞′′ indicate two possible
interleavings. We assume the execution continues with the main method body.

[𝑤 ↦→ 1, 𝑦 ↦→ 1] = last(𝑠ℎ′′) ∅ consistent
{∅ ⊲ ⟨[𝑤 ↦→ 1, 𝑦 ↦→ 1]⟩↷ [𝑤 ↦→ 1, 𝑦 ↦→ 1, 𝑧 ↦→ 2] · K()} ∈ val[𝑤 ↦→1,𝑦 ↦→1] (𝑧 := 2)

𝑠ℎ′′, 𝑞′′ → 𝑠ℎ′′ ∗∗ ⟨[𝑤 ↦→ 1, 𝑦 ↦→ 1]⟩↷ [𝑤 ↦→ 1, 𝑦 ↦→ 1, 𝑧 ↦→ 2], {K(𝑤 := 𝑤 + 1)}
(35)

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:28 C. C. Din et al.

At this point only one continuation is possible, which results in the concrete trace:
⟨𝐼𝑃 ⟩↷ invEv (𝑚, 1) ↷ 𝐼𝑃 ↷ invREv (𝑚, 1) ↷ 𝐼𝑃 ↷ [𝑤 ↦→ 1]
↷ [𝑤 ↦→ 1, 𝑦 ↦→ 1] ↷ [𝑤 ↦→ 1, 𝑦 ↦→ 1, 𝑧 ↦→ 2] ↷ [𝑤 ↦→ 2, 𝑦 ↦→ 1, 𝑧 ↦→ 2] .

There are two other possible interleavings that all result in the same final state. If, for example,
the assignment in the main method of 𝑃 were changed to 𝑦 := 2, then traces with different final
states would be generated. □

5.5.5 Trace Composition: Symbolic Variant. The trace composition in rule (31) works “eagerly”
or “on demand” in the sense that a concrete trace extending 𝜎 and a continuation containing the
local parameter 𝑦, whose value is fixed in 𝜎 [𝑦 ↦→ 𝑣], are generated on the spot. In the presence
of multiple calls to the same method, this leads to multiple evaluation of the same code, i.e. the
method body. A deductive verification calculus would avoid this and evaluate each method only
once, but symbolically [4]. We demonstrate that abstract traces allow semantic evaluation that
works similarly by defining a local evaluation function for methods which combines the use of
symbolic variables from the input-statement in Section 5.4 with the variable renaming used for
local memory in Section 5.3. We first introduce a symbolic variable 𝑌 to act as a placeholder for
the value of the substituted call parameter 𝑦 and then substitute the call parameter 𝑥 with a fresh
variable 𝑦 for disambiguation, as done in rule (31):

val𝜎 (𝑚(𝑥){𝑠}) =
{∅ ⊲ invREv{𝑌 }𝜎 (𝑚,𝑌) ↷ 𝜎 [𝑌 ↦→ ∗, 𝑦 ↦→ 𝑌] · K(𝑠 [𝑥 ← 𝑦]) | 𝑦,𝑌 ∉ dom(𝜎)} . (36)

We conventionally write 𝑦,𝑌 ∉ dom(𝜎) to express that no element in a list of variables is in the
domain of 𝜎 .
The concrete composition rule (31) needs to be adapted to a composition rule which takes the

evaluation of a method declaration and concretises the resulting symbolic trace in a well-formed
and consistent way:

𝑚(𝑥){𝑠} ∈ 𝑀 𝜌 concretises 𝜏 𝜌 (𝑝𝑐) consistent
𝜎 = last(𝑠ℎ) 𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝜎 (𝑚(𝑥){𝑠}) wf (𝑠ℎ ∗∗ 𝜌 (𝜏))

𝑠ℎ, 𝑞 → 𝑠ℎ ∗∗ 𝜌 (𝜏), 𝑞+{K(𝑠′)}
(37)

The definition of well-formedness stays the same. Definition 5.8 of trace semantics of 𝑃 stays the
same, except that rule (37) is used instead of rule (31). It is interesting to note that, while we need
one more local rule (to evaluate method declarations), the composition rule becomes simpler, more
uniform with rule (30), and more modular (not referring to events) as a consequence.

Example 5.10. Consider the program 𝑃 from Example 5.9. Let 𝑠𝑚 be the method body of𝑚. The
evaluation of the method declaration with rule (36) is as follows:
val𝜎 (𝑚(𝑥){𝑠𝑚})

= {∅ ⊲ invREv{𝑊 }𝜎 (𝑚,𝑊) ↷ 𝜎 [𝑊 ↦→ ∗,𝑤 ↦→𝑊] · K(𝑠𝑚 [𝑥 ← 𝑤]) | 𝑤,𝑊 ∉ dom(𝜎)}
= {∅ ⊲ invREv{𝑊 }𝜎 (𝑚,𝑊) ↷ 𝜎 [𝑊 ↦→ ∗,𝑤 ↦→𝑊] · K(𝑦 := 𝑤 ; 𝑤 := 𝑤 + 1) | 𝑤,𝑊 ∉ dom(𝜎)} .

5.5.6 Calculus. We need to design proof rules modeling the semantic rules (29) and (36)–(37). In
contrast to the semantic rules, the calculus must ensure that all possible interleavings are analysed;
i.e., the new procedure must be able to start executing immediately. This effect can be captured in a
single proof rule MtdCall, letting the body of the procedure run in parallel with the continuation
of the calling statement. The new procedure𝑚 is introduced as a branch in a parallel statement
by wrapping the body of𝑚 into a block and declaring its formal parameter 𝑥 as a local variable.
This allows us to re-use the previously declared rules; in particular, we use the parallel operator

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:29

to explore all interleavings of the execution of the new procedure activation with the existing
ones. Note that the extended trace 𝜏 ′ is obviously well-formed (assuming that 𝜏 was well-formed),
because the invocation reaction event occurs after the corresponding invocation.

(MtdCall)
last(𝜏) = 𝜎 𝑚(𝑥){𝑠′} ∈ 𝑀 𝜏 ′ = 𝜏 ∗∗ invEv𝜎 (𝑚, val𝜎 (𝑒)) ∗∗ invREv𝜎 (𝑚, val𝜎 (𝑒))

Γ, 𝑝𝑐 ⇒ 𝜏 ′ [co 𝐶 [skip] | | {𝑥 ; 𝑥 := 𝑒; 𝑠′} oc] 𝜙
Γ, 𝑝𝑐 ⇒ 𝜏 [call(𝑚, 𝑒) @ 𝐶] 𝜙

For simplicity we do not introduce separate postconditions for different procedure calls. This would
require variable renaming in postconditions corresponding to the renaming in rule Local1 of our
calculus. Such postconditions would be more natural in a setting with trace predicates [20] rather
than the state predicates considered in the present paper.

5.6 Guarded Statements

Guarded statements are a common synchronisation mechanism in concurrent languages [29, 53, 58].
A statement is preceded by a Boolean guard expression that blocks execution of the current process,
until the guard is evaluated to true. This can be used, for example, to ensure that the result of a
computation is ready before it is used, a message has arrived, etc. Our syntax for guarded commands
is inspired by ProMeLa; the syntax for statements from Figure 2 becomes (where 𝑔 is a Boolean
expression):

𝑠 ∈ Stmt ::= :: 𝑔; 𝑠 |

5.6.1 Local Evaluation. A local evaluation rule for a guarded statement is straightforward to
design. If the Boolean guard 𝑔 evaluates to true, the execution continues normally. If the guard
𝑔 evaluates to false, the execution is blocked until 𝑔 evaluates to true. Blocking is modeled by
re-scheduling the entire guarded statement in the continuation.

val𝜎 (:: 𝑔; 𝑠) = {{val𝜎 (𝑔) = tt} ⊲ ⟨𝜎⟩ · K(𝑠)}, {val𝜎 (𝑔) = ff} ⊲ ⟨𝜎⟩ · K(:: 𝑔; 𝑠)}} (38)

5.6.2 Trace Composition. The trace composition rule (14) is unchanged, but it is interesting to
observe how it works in the presence of :: 𝑔; 𝑠 . When rule (14) processes a continuation with a
guarded statement, it may result in a deadlocked trace due to the second alternative, where from
some point onward no progress is made on some non-empty continuations in the process pool.
How to detect and, possibly, to avoid deadlocks is a question outside the scope of this paper.

5.6.3 Calculus. Structurally, the local rule (38) for guarded statements is very similar to the
rule (8) for the conditional (in fact, the case when the guard is true, is actually identical). Indeed,
we can design a calculus rule modeled after Cond (cf. Figure 3):

(GrdStmt)
last(𝜏) = 𝜎

Γ, 𝑝𝑐 ∪ {val𝜎 (𝑔) = tt} ⇒ 𝜏 [𝐶 [𝑠]] 𝜙 Γ, 𝑝𝑐 ∪ {val𝜎 (𝑔) = ff} ⇒ 𝜏 [𝐶 [:: 𝑔; 𝑠]] 𝜙
Γ, 𝑝𝑐 ⇒ 𝜏 [:: 𝑔; 𝑠 @ 𝐶] 𝜙

While this rule is certainly sound, it is clearly incomplete, because it admits infinitely many possible
interleavings. To achieve completeness, one would need to establish a suitable invariant that holds
whenever the guard is evaluated and that is strong enough to render the proof finite (for example,
by excluding a branch when the guard is false). For details on such techniques, we refer the reader
to the literature [35, 63].

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:30 C. C. Din et al.

6 SEMANTICS FOR A SHARED-MEMORY MULTIPROCESSOR LANGUAGE

We consider a multiprocessor extension to the programming language of Section 5. This goes some
way to realize a concurrent, object-oriented setting: We will now spawn processes, each with its
own identity and its own task queue to execute, but memory is still shared among the processes.
In addition, processes may exchange values by sending and receiving messages, which have their
own identity and thus provide the capability to impose ordering constraints among them. Tasks
are method invocations similar to the ones defined in the previous section. In particular, we use the
second variant of the semantics, defined in Section 5.5.5 with the rules (36)–(37).

Expressions on the right-hand side of assignments are extended with spawn(𝑚, 𝑒), which creates
a new (virtual) process where task 𝑚 is called with an actual value 𝑒 . It returns the identifier
of the newly created process. Furthermore, two statements send(𝑒1, 𝑒2), to send a value 𝑒1 to a
process with identifier 𝑒2, and receive(𝑥 , 𝑒), to bind a value received from 𝑒 to the variable 𝑥 , are
introduced such that processes may exchange values. The syntax is shown in Figure 6.

𝑃 ∈ prog ::=𝑀{𝑠}
𝑀 ∈ Meth ::=𝑚(𝑥){𝑠}
𝑠 ∈ Stmt ::= skip | 𝑥 := 𝑟ℎ𝑠 | if 𝑒 { 𝑠 } | 𝑠; 𝑠 | while 𝑒 { 𝑠 } | co 𝑠 | | 𝑠 oc

| atomic(𝑠𝑡) | call(𝑚, 𝑒) | send(𝑒, 𝑒) | receive(𝑥, 𝑒)
𝑟ℎ𝑠 ∈ Rhs ::= 𝑒 | spawn(𝑚, 𝑒)

Fig. 6. Syntax for the Shared-Memory Multiprocessor Language.

6.1 LAGC Semantics

In a multiprocessor setting it is necessary to keep track of what each process does, in particular,
about the origins and destinations of messages. This is achieved by introducing process identifiers
and tagging each event in a trace with the identifier of the process that produced it. Remark that
this tagging is orthogonal to the local semantic evaluation.
Definition 6.1 (Tagged Trace, Projection). Let ev(𝑒) be an event, 𝜏, 𝜏1, 𝜏2 traces, and 𝑝 ∈ PId a

process identifier. A tagged trace 𝜏𝑝 is defined inductively as follows:
(ev(𝑒)) 𝑝 = ev𝑝 (𝑒)
𝜎 𝑝 = 𝜎

(𝜏 ↷ 𝑡) 𝑝 = 𝜏𝑝 ↷ 𝑡𝑝

6.1.1 Local Evaluation. In the following, let PId be a set of process identifiers with typical
element 𝑝 and MId a set of message identifiers with typical element 𝑖 . We start with the evaluation
rule for send. The rule evaluates the arguments to send and creates a trace from the current state
𝜎 with an event sendEv (𝑣, 𝑝, 𝑖) expressing that a value 𝑣 is sent to the process 𝑝 by a message with
the identifier 𝑖 . The message can have any possible identifier, so the rule provides traces for all of
them:

val𝜎 (send(𝑒, 𝑒′)) = {∅ ⊲ sendEv𝜎 (val𝜎 (𝑒), val𝜎 (𝑒′), 𝑖) · K()} | 𝑖 ∈ MId} . (39)
The local semantics of receive and spawn is more complex, because the values received in

these statements are not known in the local evaluation. We employ the technique using symbolic
variables introduced in Section 5.4. In contrast to the case for method calls (Section 5.5.2), we do
not have the option to compose concrete continuations “on demand”, because the return values
for receive and spawn are going to be resolved later.10 The rules evaluate to a trace with the
10It would be possible to introduce symbolic values for message identifiers as well in the rule for send and receive.
However, since programs do not manipulate message identifiers, there is no reason to do so.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:31

event receiveEv (𝑣, 𝑝, 𝑖), expressing that the value 𝑣 is received from a process 𝑝 by a message
with identifier 𝑖 , and a trace with the event spawnEv (𝑚, 𝑣, 𝑝), expressing that a new process with
identifier 𝑝 is created to execute the task𝑚 with the parameter value 𝑣 . In each rule, the symbolic
variable 𝑌 represents the (as yet) unknown received value.

val𝜎 (receive(𝑥, 𝑒)) = {∅ ⊲ receiveEv{𝑌 }𝜎 (𝑌, val𝜎 (𝑒), 𝑖) ↷ 𝜎 [𝑥 ↦→ 𝑌, 𝑌 ↦→ ∗] · K()
| 𝑌 ∉ dom(𝜎), 𝑖 ∈ MId} (40)

val𝜎 (𝑥 := spawn(𝑚, 𝑒)) = {∅ ⊲ spawnEv{𝑌 }𝜎 (𝑚, val𝜎 (𝑒), 𝑌) ↷ 𝜎 [𝑥 ↦→ 𝑌, 𝑌 ↦→ ∗] · K()
| 𝑌 ∉ dom(𝜎)} (41)

All previous local rules are unchanged.

6.1.2 Trace Composition. The trace composition rules generalize rules (30) and (37). There
are three main differences: First, both composition rules now work on symbolic traces, simply
because rules (40)–(41) are symbolic. Second, to account for having several processes, we introduce
a mapping Ω from process identifiers 𝑝 to multisets of continuations 𝑞, i.e. Ω(𝑝) gives the current
task list for a given process. As before, we denote with + the disjoint multiset union on task lists.
The judgment representing trace extension by one step has the form: 𝑠ℎ, Ω → 𝑠ℎ′, Ω′. Third, we
tag the generated concrete trace with the process identifier that created it.

The following rule selects a processor 𝑝 with non-empty task list and from there a continuation 𝑠 ,
evaluated in last(𝑠ℎ). The resulting symbolic trace 𝜏 must be concretisable such that, after tagging, it
extends 𝑠ℎ in a well-formed manner. Observe that 𝑠ℎ is tagged already. The remaining continuation
K(𝑠′) is added back to 𝑝’s task list.

𝑝 ∈ dom(Ω) Ω(𝑝) = 𝑞+{K(𝑠)} 𝜎 = last(𝑠ℎ)
𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝜎 (𝑠) 𝜌 concretizes 𝜏 𝜌 (𝑝𝑐) consistent wf (𝑠ℎ ∗∗ 𝜌 (𝜏)𝑝)

𝑠ℎ,Ω → 𝑠ℎ ∗∗ 𝜌 (𝜏)𝑝 ,Ω[𝑝 ↦→ 𝑞+{K(𝑠′)}]
(42)

The following rule is similar and follows the pattern established in rule (37). It starts to evaluate
a method body on a processor 𝑝 and adds the remaining continuation K(𝑠′) to its task list. If
𝑝 ∉ dom(Ω), we use the notational convention Ω(𝑝) = ∅ and avoid a special operation to create a
process. The following rule thus either creates a task inside an existing process or spawns a new
process if necessary, similar to rule (37). Well-formedness ensures that the correct number of tasks
is created, relying on the fact that val𝜎 (𝑚(𝑥){𝑠}) starts with an invocation reaction event.

𝑚(𝑥){𝑠} ∈ 𝑀 𝜎 = last(𝑠ℎ) 𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝜎 (𝑚(𝑥){𝑠})
𝜌 concretizes 𝜏 𝜌 (𝑝𝑐) consistent wf (𝑠ℎ ∗∗ 𝜌 (𝜏)𝑝)

𝑠ℎ,Ω → 𝑠ℎ ∗∗ 𝜌 (𝜏)𝑝 ,Ω[𝑝 ↦→ Ω(𝑝)+{K(𝑠′)}]
(43)

6.1.3 Well-formedness. We need to establish the basic properties of sending and receiving as
well as to ensure that each process has the correct number of tasks. We extend the well-formedness
predicate, introduced in Definition 5.7, except for the last rule that handles invocation reaction
events, which is replaced by the last rule in the following definition.

Definition 6.2 (Well-formedness). The first three rules come from Definition 5.7. The fourth rule
ensures no two messages will be sent with the same message identifier, the fifth one states that
each message is received only once. Similarly, the sixth rule guarantees that each spawn allocates a
new process identifier. The final rule reflects the fact that the code executed on a processor 𝑝 can

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:32 C. C. Din et al.

be the reaction to either a call or a spawn event, i.e. spawnEv𝑝 acts as a particular invocation event.

wf (𝜖) = 𝑡𝑟𝑢𝑒

wf (𝑠ℎ↷ 𝜎) =wf (𝑠ℎ)
wf (𝑠ℎ↷ invEv𝑝 (𝑚, 𝑣)) =wf (𝑠ℎ)

wf (𝑠ℎ↷ sendEv𝑝 (𝑒, 𝑝′, 𝑖)) =wf (𝑠ℎ) ∧ �𝑝′′, 𝑒′, 𝑝′′′ . sendEv𝑝′′ (𝑒′, 𝑝′′′, 𝑖) ∈ 𝑠ℎ
wf (𝑠ℎ↷ receiveEv𝑝 (𝑒, 𝑝′, 𝑖)) =wf (𝑠ℎ) ∧ �𝑝′′, 𝑒′, 𝑝′′′ . receiveEv𝑝′′ (𝑒′, 𝑝′′′, 𝑖) ∈ 𝑠ℎ
wf (𝑠ℎ↷ spawnEv𝑝 (𝑚, 𝑣, 𝑝′)) =wf (𝑠ℎ) ∧ �𝑝′′,𝑚′, 𝑣 ′ . spawnEv𝑝′′ (𝑚′, 𝑣 ′, 𝑝′) ∈ 𝑠ℎ

wf (𝑠ℎ↷ invREv𝑝 (𝑚, 𝑣)) =wf (𝑠ℎ) ∧
#𝑠ℎ (invEv𝑝 (𝑚, 𝑣)) +

∑︁
𝑝′∈PId

#𝑠ℎ (spawnEv𝑝
′ (𝑚, 𝑣, 𝑝)) > #𝑠ℎ (invREv𝑝 (𝑚, 𝑣))

Message identifiers are used to avoid sending or receiving the same message twice (i.e. two
messages with the same identifier). In Section 6.2 we develop the well-formedness predicate in an
incremental manner. For example, up to now we do not specify when a message is received. This
is one of the aspects discussed in Section 6.2, where for example, the basic correctness criterion
stating that “all received messages have been sent” is captured by the well-formedness condition in
Definition 6.4, which should be used together with the wf predicate in Definition 6.2.

6.1.4 Global Trace Semantics.

Definition 6.3 (Program Semantics with Multiprocessors). Given a program 𝑃 with a method table
𝑀 and a main block 𝑠𝑚𝑎𝑖𝑛 , let

𝑠ℎ0, Ω0 → 𝑠ℎ1, Ω1 → · · ·

be a maximal sequence obtained by the repeated application of the composition rules (42)–(43),
starting with

⟨𝐼𝑃 ⟩↷ spawnEv0 (𝑚𝑎𝑖𝑛, 0, 0), Ω[0 ↦→ {K(𝑠𝑚𝑎𝑖𝑛)}] . (44)

If the sequence is finite, then it must have the form

⟨𝐼𝑃 ⟩↷ spawnEv0 (𝑚𝑎𝑖𝑛, 0, 0), Ω[0 ↦→ {K(𝑠𝑚𝑎𝑖𝑛)}] → · · · → 𝑠ℎ,Ω ,

where Ω (𝑝) = ∅ for all 𝑝 ∈ dom(Ω). If the sequence is infinite, let 𝑠ℎ = lim𝑖→∞ 𝑠ℎ𝑖 . The set of all
such potentially infinite traces 𝑠ℎ is denoted with Tr(𝑃, 𝐼𝑃).

The spawn event at the start of a trace represents the creation of an initial process that runs the
main method. The well-formedness of traces ensures that subsequently spawned processes will not
erroneously be assigned index 0, which is reserved for the code executed in the main method.

6.2 Communication Patterns

We now unleash the power of traces with events and show that several well-known communication
patterns can be defined simply by adding well-formedness constraints to Definition 6.2. Imposing
such patterns in the LAGC semantics is modular in the sense that all other rules are unaffected
by the enforced patterns. The well-formedness constraints defined in this section are to be added
conjunctively to the well-formedness predicate wf over concrete traces 𝑠ℎ (Definition 6.2) to
achieve the desired semantic properties. We recall for the definitions below that 𝑒 is an expression,
𝑝, 𝑝′ ∈ PId process identifiers, and 𝑖 ∈ MId a message identifier.
We first consider the basic tenet of asynchronous communication, stipulating that received

messages must have been sent.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:33

Definition 6.4 (Asynchronous Communication Constraint). Well-formed asynchronous communi-
cation is captured by the constraint wf ac, defined as follows :

wf ac (𝑠ℎ↷ receiveEv𝑝 (𝑒, 𝑝′, 𝑖)) = wf (𝑠ℎ) ∧ sendEv𝑝′ (𝑒, 𝑝, 𝑖) ∈ 𝑠ℎ
Next, we consider the FIFO (first-in, first-out) ordering principle, which stipulates that messages

between the same processors must be received in the same order as they were sent; i.e. messages
may not overtake each other. Let the notation ev𝑃 (𝑣) <𝑠ℎ ev′𝑃

′ (𝑣 ′) express that ev𝑃 (𝑣) appears
before ev′𝑃 ′ (𝑣 ′) in a trace 𝑠ℎ.

Definition 6.5 (FIFO Communication Constraint). Well-formed FIFO communication is captured
by the constraint wf fifo, defined as follows :

wf fifo (𝑠ℎ↷ receiveEv𝑝 (𝑒, 𝑝′, 𝑖)) = wf ac (𝑠ℎ↷ receiveEv𝑝 (𝑒, 𝑝′, 𝑖)) ∧(
∀sendEv𝑝′ (𝑒′, 𝑝, 𝑖′) ∈ 𝑠ℎ. sendEv𝑝′ (𝑒′, 𝑝, 𝑖′) <𝑠ℎ sendEv𝑝

′ (𝑒, 𝑝, 𝑖)
=⇒ receiveEv𝑝 (𝑒′, 𝑝′, 𝑖′) ∈ 𝑠ℎ

)
.

A channel is an ordered pair (𝑝, 𝑝′) of processor identifiers (not necessarily distinct) such that 𝑝
sends messages to 𝑝′ and 𝑝′ receives messages sent by 𝑝 . The messages in a channel after a trace
𝑠ℎ can be given as a set of message identifiers, defined by the following function:

Definition 6.6 (Channel). Given a concrete trace 𝑠ℎ and a channel 𝑐ℎ = (𝑝, 𝑝′), we define by
inChannel(𝑠ℎ, 𝑐ℎ) the messages in 𝑐ℎ that have been sent, but not yet received within 𝑠ℎ:

inChannel(𝑠ℎ, (𝑝, 𝑝′)) = {𝑖 | ∃𝑒.sendEv𝑝 (𝑒, 𝑝′, 𝑖) ∈ 𝑠ℎ ∧ receiveEv𝑝′ (𝑒, 𝑝, 𝑖) ∉ 𝑠ℎ} .
We can detect that a fixed bound 𝑁 > 0, the capacity of a FIFO channel, has been reached by

the following condition, which blocks a send event if the channel is full, i.e. the channel already
contains 𝑁−1 messages.

Definition 6.7 (Bounded FIFO Communication Constraint). Let 𝑁 be an integer. Well-formed 𝑁 -
bounded FIFO, ensured by the predicate wf bd(𝑁) , is captured by extending the constraint wf fifo for
standard (unbounded) FIFO by a check on the bound of the channel as follows. Well-formedness of
a trace ending by a reception event is given by wf fifo, and an additional rule checks well-formedness
of message sending:

wf bd(N) (𝑠ℎ↷ sendEv𝑝 (𝑒, 𝑝′, 𝑖)) = wf (𝑠ℎ) ∧ | inChannel(𝑠ℎ, (𝑝, 𝑝′)) | < 𝑁 .

Causally ordered (CO) messages are harder to characterize than the previous communication
patterns, because in the most simple definition of CO found in [23], the receiving events must occur
in the right order provided that sending events are causally ordered. Our event structure does not
record causal ordering. This could certainly be realized, but it would add considerable complexity
to the evaluation rules. Instead, we use the information that is already provided by the events in a
given trace, based on an alternative characterization of CO [23]: “a computation is CO if and only
if no message is bypassed by a chain of other messages”. We first define a chain predicate such that
Chain(𝑒, 𝑒′, 𝑠ℎ) is true if there is a chain of messages inside sh that asserts the causal ordering of 𝑒
and 𝑒′ induced by messages.

Definition 6.8 (Communication Chain). The predicate Chain holds for two events 𝑒 and 𝑒′ in a
given trace 𝑠ℎ, if there is a chain of messages asserting the causal ordering between 𝑒 and 𝑒′:

Chain(𝑒, 𝑒′, 𝑠ℎ) =

∃𝑛, 𝑒1, . . . , 𝑒𝑛, 𝑖1, . . . , 𝑖𝑛, 𝑝1, . . . , 𝑝𝑛+1.(
∀1 ≤ 𝑘 ≤ 𝑛. sendEv𝑝𝑘 (𝑒𝑘 , 𝑝𝑘+1, 𝑖𝑘) ∈ 𝑠ℎ ∧ receiveEv𝑝𝑘+1 (𝑒𝑘 , 𝑝𝑘 , 𝑖𝑘) ∈ 𝑠ℎ

)
∧(

∀1 < 𝑘 ≤ 𝑛. receiveEv𝑝𝑘 (𝑒𝑘−1, 𝑝𝑘−1, 𝑖𝑘−1) <𝑠ℎ sendEv𝑝𝑘 (𝑒𝑘 , 𝑝𝑘+1, 𝑖𝑘)
)

such that 𝑒 <𝑠ℎ sendEv𝑝1 (𝑒1, 𝑝2, 𝑖1) ∧ receiveEv𝑝𝑛+1 (𝑒𝑛, 𝑝𝑛, 𝑖𝑛) <𝑠ℎ 𝑒′ .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:34 C. C. Din et al.

We now define a well-formedness constraint that checks the absence of a message sent in the
past (according to the definition of Chain) but not yet received. The following definition generalises
Definition 6.5 to messages causally ordered (according to the Chain predicate) instead of messages
originating from the same process:

Definition 6.9 (CO Communication Constraint). Well-formed CO communication is captured by
the constraint wf co, defined as follows :

wf co (𝑠ℎ↷ receiveEv𝑝 (𝑒, 𝑝′, 𝑖)) = wf (𝑠ℎ) ∧ sendEv𝑝′ (𝑒, 𝑝, 𝑖) ∈ 𝑠ℎ ∧
∀𝑒′′, 𝑝′′, 𝑖′′ .Chain(sendEv𝑝′′ (𝑒′′, 𝑝, 𝑖′′), sendEv𝑝′ (𝑒, 𝑝, 𝑖), 𝑠ℎ)

=⇒ receiveEv𝑝 (𝑒′′, 𝑝′′, 𝑖′′) ∈ sh .

Finally, we have a look at synchronous call patterns. Several definitions can be found in [23]. We
adopt a definition that constrains well-formed traces rather strongly: any send event is immediately
followed by the corresponding receive event.

Definition 6.10 (Strict Synchronous Communication Constraint). Well-formed strict synchronous
communication is captured by the constraint wf sync, defined as follows :

wf sync (𝑠ℎ↷ receiveEv𝑝 (𝑒, 𝑝′, 𝑖)) =
(
wf (𝑠ℎ) ∧ 𝑠ℎ = 𝑠ℎ′ ∗∗ sendEv𝑝

′

𝜎 (𝑒, 𝑝, 𝑖)
)

The above constraint is realized, for example, by rendez-vous channels in ProMeLa [53], see
Section 7.1.

One can define more liberal notions of synchronous communication that accept the presence of
independent events between the sending and the reception of the message. The crown criterion [23],
for example, can be used for this purpose. Its definition is global over traces and requires to define
wf in a non-inductive manner (as an invariant holding for the trace at any time). We omit a detailed
elaboration, because this would distract from the main point of this paper.

7 CASE STUDIES

We apply the LAGC framework to define the semantics of a channel-based language with processes—
ProMeLa [53], of an actor-based language, and, finally, of an active object language [27] such as
ABS [2, 40, 58].

In channel-based communication, where channels have an identifier, the processes send and
receive messages via channels: messages are received in the order they are sent and they are
received only once (consumed) by any process that has access to the channel identifier. In contrast,
in actor-based and active object languages (1) each object has an active process that executes one
message at a time, (2) messages are asynchronously sent to objects, so there is no fixed order on
receiving messages, and (3) in active object languages replies from messages are received in a mail
box (called future [28]) and might be read multiple times by anyone with access to the mail box’s
identifier. These case studies not only show how versatile the LAGC framework is for capturing
diverse semantics and concurrent language constructs, but also that it is applicable to practically
used languages.

7.1 ProMeLa

ProMeLa [53] is a concurrent modeling language that has been used to model and analyse
numerous industrial systems. It comes with an industry-strength model checker [14]. We do not
give a full LAGC-style semantics of ProMeLa, but we discuss its main features and illustrate that
they can be formalised using minor variations of the concepts discussed above. We also do not
give the DL calculus for ProMeLa, which mostly follows the calculus developed in Sections 4–5,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:35

1 chan r e qu e s t = [0] of {byte } ;

2
3 active proctype C l i e n t 0 () {

4 r e qu e s t ! 0 ;

5 }

6 active proctype C l i e n t 1 () {

7 r e qu e s t ! 1 ;

8 }

9 active proctype S e r v e r () {

10 byte n ;

11
12 do
13 : : r e qu e s t ?n ;

14 printf (" c l i e n t %d \ n" , n)

15 od
16 }

Fig. 7. A simple ProMeLa program.

since ProMeLa is designed for model checking. We assume the reader is familiar with ProMeLa.
A simple example of a ProMeLa program is shown in Figure 7.

Types, Variables, Expressions. All ProMeLa datatypes are mapped into finite integer types, in-
cluding Booleans, process and channel identifiers, enumerations, arrays, etc. Strings occur only as
literals in print statements. Variables declared outside a process are global and can be accessed by
any process, such as the request channel in Figure 7, line 1. Like inWHILE, ProMeLa expressions
are side effect-free and their evaluation is standard.

Processes. Methods and method calls do not exist in ProMeLa, so call is not present. All
ProMeLa processes are declared and started in the beginning by a—possibly implicit—initial
process, so spawn does not occur in the ProMeLa syntax either. In Figure 7, three processes are
declared and started upfront. It is easy to create an initial judgment similar to rule (44) from the
process declarations of a ProMeLa program 𝑃 :

⟨𝐼𝑃 ⟩, Ω𝑃 ,

where Ω𝑃 (𝑝) = {K({𝑠𝑝 })} for each process 𝑝 ∈ 𝑃 with program code 𝑠𝑝 . The code is wrapped in a
scope to handle local variable declarations as in Section 5.3.

There is no need for a method table, because there are no method calls. For the same reason, the
range of Ω is a singleton. ProMeLa processes execute in parallel and interleave on global variables.
The granularity of interleaving in ProMeLa is the same as in Section 5.1, so the continuations in
the local rules are unchanged. Composition rule (42) is adequate for the ProMeLa semantics, while
rule (43) is not needed, because there are no method calls and the program code of all processes is
part of the initial judgment. In consequence, neither spawn, nor invocation, nor invocation reaction
events occur in ProMeLa traces.

Statements. There is a print statement with no effect on states, we decide not to observe the
effect on the trace, we can thus give it the semantics of skip in rule (6). Assignments are exactly
as inWHILE, discussed in Section 3. Instead of if- and while-statements, ProMeLa has selection
and repetition statements over guarded commands, which may occur only there. The semantics of
guarded statements is as in Section 5.6. The semantics of a selection if :: g1; s1 · · · :: g𝑛 ; s𝑛 fi is
a straightforward generalisation of rules (8) and (38) with 𝑛 + 1 premises; one for each guarded
statement and one premise if no guard is true. The path condition of the 𝑖-th guarded statement is
g𝑖 . When more than one guard is true, any one of them can be taken.
More generally, in ProMeLa, any statement 𝑠 can serve as a guard, so a guard can have a side

effect. This can be modeled simply by putting 𝑠 into the continuation of its premise. All statements
except send and receive (see below) are executable, their path condition simply becomes tt. This

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:36 C. C. Din et al.

can be assumed even for send and receive, because their execution is modeled bywell-formedness
constraints (see below), not by guards.
A repetition loops infinitely over its body and executes any of the statements whose guard is

true; in the loop on the lines 12–15 of Figure 7, line 13 has an empty guard, which defaults to true.
A repetition can only be exited by break or goto statements (see below). The local evaluation of
repetitions can be reduced to selection in a similar manner as while is reduced to if in rule (9).

Jumps. ProMeLa features a goto statement, whose argument is a label within the same process.
Such unconditional jumps without a (process) context switch are easy to characterise semantically
via continuations:

val𝜎 (goto 𝑙) = {∅ ⊲ ⟨𝜎⟩ · K(from(𝑙, 𝑝))} where 𝑝 is the evaluated process . (45)

The code in the continuation is computed from 𝑙 and 𝑠𝑝 via a code transformation from(𝑙, 𝑝),
defined as follows: If 𝑙 appears in a top-level statement, then from(𝑙, 𝑝) is the code syntactically
following 𝑙 . If 𝑙 is inside a clause 𝑠𝑖 of a selection statement 𝑠 , then from(𝑙, 𝑝) is the remaining clause
of 𝑠𝑖 after 𝑙 , followed by the code after 𝑠 . If 𝑙 occurs inside a clause 𝑠𝑖 of a repetition statement 𝑟 ,
then from(𝑙, 𝑝) is the remaining clause of 𝑠𝑖 after 𝑙 , followed by 𝑟 and then the code that follows 𝑟 .
For nested statements this transformation is repeatedly applied inside out.

The break statement is equivalent to a goto with an implicit label that points to the code after
the repetition it is contained in.

Atomic. ProMeLa has an atomic statement11, which works as in Section 5.2, except it may
contain a guard that can cause blocking. In this case, interleaving is possible. In case the guard 𝑔
evaluates to true, statement 𝑠 is simply atomically executed according to rule (24).12 Otherwise, it
puts the whole guarded atomic block into a continuation, so that the guard can be re-evaluated
later.

val𝑂,𝐹
𝜎 (atomic{:: 𝑔; 𝑠}) = {{val𝜎 (𝑔) = ff} ⊲ ⟨𝜎⟩ · K(atomic{:: 𝑔; 𝑠})}

∪{{val𝜎 (𝑔) = tt}∪𝑝𝑐 ⊲ 𝜏 · K() | 𝑝𝑐 ⊲𝜏 · K() ∈val𝑂,𝐹
𝜎 (atomic(𝑠))}

(46)

Channels. In ProMeLa, the send and receive commands have the syntax seen in Figure 7: if 𝑐
is a channel identifier and 𝑒 a list of expressions, then the current process uses 𝑐 ! 𝑒 to send the value
of 𝑒 to 𝑐 . Dually, with 𝑐 ? 𝑒 it receives 𝑒 from 𝑐 .13 In contrast to Definition 6.6 (Section 6), ProMeLa
channels are explicitly declared, and the address of a send (the origin of a receive) statement is not
the recipient (sender) process, but a channel. A message can be read by anyone who has access to
the channel identifier it was sent to. In the case of globally declared channels (line 1), this is any
process. For locally declared channels the receiving process must have received or declared the
channel identifier.

The semantics of ProMeLa’s send and receive can be modeled in analogy to Section 6.1, but one
uses send and receive events of the form sendEv𝑝 (𝑒, 𝑐, 𝑖) and receiveEv𝑝 (𝑒, 𝑐, 𝑖), respectively, where
the address is a channel.14

Well-formedness. Only the first two rules of Definition 6.2 (with obvious adaptations) are needed,
because there are no method calls or dynamically created processes. On the other hand, the option

11Although ProMeLa permits loops to occur inside atomic, these are actually discouraged; if loops occur, they must
always terminate.
12Rule (24) for unguarded atomic blocks ensures that the derived trace always ends with an empty continuation.
13ProMeLa allows either a variable, which is then set to the received value or an expression that is matched against it.
14In case one of the 𝑒 is not a variable, but a match expression, the assignment in the local evaluation rule (39) has the
variables occurring in 𝑒 in its domain.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:37

of local channels requires to model the visibility of channels. This can be done by well-formedness
constraints of the following form:

wf ch (𝑠ℎ↷ receiveEv𝑝 (𝑒, 𝑐, 𝑖)) = wf (𝑠ℎ)∧
(
isLocal(𝑝, 𝑐) ∨ isGlobal(𝑐) ∨ receiveEv𝑝 (𝑐, 𝑐′, 𝑖) ∈ 𝑠ℎ

)
.

The predicate isLocal(𝑝, 𝑐) holds if the process 𝑝 declares a local channel named 𝑐 , isGlobal(𝑐)
holds if channel 𝑐 is declared globally. These predicates can be easily checked by inspecting the code
of a ProMeLa program. The constraint expresses that each channel used in a receive statement in
process 𝑝 must be visible at that point. This is the case if it is either global, or locally declared in 𝑝 ,
or it was received earlier. There is a similar constraint for send statements.

There are two channel variants in ProMeLa: rendez-vous channels impose strictly synchronous
communication. For those channels the well-formedness constraint in Definition 6.10 is used. The
other channel type are buffered channels with a capacity 𝑁 > 0. These are characterised by the
bounded FIFO pattern in Definition 6.7.

The standard ProMeLa semantics stipulates that received messages are consumed, i.e. they can
be read only once, which is ensured by the following constraint:

wf (𝑠ℎ↷ receiveEv𝑝 (𝑒, 𝑐, 𝑖)) = wf (𝑠ℎ) ∧ � 𝑒′, 𝑝′ . receiveEv𝑝′ (𝑒′, 𝑐, 𝑖) ∈ 𝑠ℎ .

It is possible to change certain features of ProMeLa channels, for example, reception can be
made non-consumptive, out-of-order reception can be permitted, send and receive can be made
non-blocking. All of these can be characterised by suitable well-formedness constraints, but we
refrain from spelling out details.

Synchronisation. Channels, like guarded commands, are often used for synchronisation purposes
in ProMeLa. The receive statement on a buffered channel is only executable if it contains a message;
one can only send to a channel that is not full. Non-executable statements block a process until
they become executable. In contrast to guarded commands, no specific evaluation rule is required
to model blocking senders and receivers, because the correct communication order is already
guaranteed by the well-formedness constraints.

This consideration suggests that blocking guards might as well be modeled by suitable “waiting”
events. Indeed, this is possible, but less natural in that case.

7.2 Actors

We define a pure, object-based actor language based on the language in Section 6; Figure 8 shows
the syntax. There is a one-to-one mapping between objects and actors. Each actor has its own
process with local memory and executes calls to its methods with run-to-completion semantics (in
consequence, non-terminating method calls render an actor unresponsive). Each actor can only
access its own local memory. The state of another actor can only be modified via a method call.

𝑃 ∈ Prog ::=𝐶𝐷 sc
𝐶𝐷 ∈ ClassDecl ::= class 𝐶 {fd 𝑀}
𝑀 ∈ MethDecl ::=𝑚(𝑥) 𝑠𝑐
𝑑 ∈ VarDecl ::= 𝜀 | 𝑥 ; 𝑑
sc ∈ Scope ::= {𝑑 atomic(s)}
𝑠 ∈ Stmt ::= skip | 𝑥 := rhs | if 𝑒 { s } | 𝑥 !𝑚(𝑒) | s; s
rhs ∈ Rhs ::= 𝑒 | new 𝐶 (𝑒)

Fig. 8. Syntax of the Actor Language in Section 7.2

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:38 C. C. Din et al.

In this actor language, a program 𝑃 consists of a set of class declarations 𝐶𝐷 with a main block
sc. Each class has a name 𝐶 , which also becomes the type of the class, with a sequence of field
declarations fd and method declarations𝑀 . Field declarations have the same syntax as local variable
declarations 𝑑 . For simplicity, we let each method declaration associate a unique name𝑚 to a list of
arguments 𝑥 and a method body sc.

A method body starts with local variable declarations followed by an atomic statement wrapping
a sequence of statements 𝑠 . Recall from Section 5.2 that we excluded loops inside atomic, and thus
exclude the while statement from the syntax. This is no fundamental restriction, because actors
may call each other and permit unbounded recursion.
The effect of atomic is to enforce a run-to-completion semantics. Rather than changing the

semantics of the programs discussed in Sections 3–6, we here make atomicity explicit. In most
actor languages [27], the atomic keyword is not used because actors are single threaded, and thus
“locally atomic” by default.

We extend the statements ofWHILE, given in Figure 2, with asynchronous method calls 𝑥 !𝑚(𝑒)
on a caller object 𝑥 . The semantics of asynchronous calls combines the semantics of sending a
message and a method call. These calls are not blocking, so in the absence of futures or promises,
there is no direct way to return a value to the caller (return values via futures are modeled in
Section 7.3 below).15 The right-hand-side of assignments includes expressions and new 𝐶 (𝑒). The
latter creates a new actor object of class 𝐶 with constructor arguments 𝑒 .
In the following, let OId be a set of object identifiers with typical element 𝑜 . We represent a

program 𝑃 in terms of a global lookup table G: A set of triples each consisting of a class name with
its field and method declarations:

G = {⟨𝐶, fd,𝑚(𝑥) sc⟩ | fd ∈ fields(𝐶), 𝑚 ∈ methods(𝐶), 𝐶 ∈ 𝑃} .

In the above expression we use selector functions with obvious definitions: fields(𝐶) returns
the field names of a class 𝐶 , methods(𝐶) returns the methods declared in a class 𝐶 . We also define
class(𝑋), where 𝑋 is either an object identifier or a variable of type OId, that returns the class of 𝑋 ,
as well as lookup(𝑚,G) that returns the declaration of a method with name𝑚 in G.

7.2.1 Local Evaluation. When following the principle of local evaluation, we face the problem
that a statement 𝑠 , which is locally evaluated, cannot possibly know the object it is running on. We
address this issue in the same manner as we dealt with unknown values before, i.e. by introducing a
parameter𝑂 that is instantiated during trace composition. Since this parameter must be instantiated
consistently for all statements an object 𝑂 executes, it becomes a parameter of the semantic
evaluation function, denoted val𝑂𝜎 (𝑠), where 𝑂 is a symbolic variable. The evaluation function
val𝑂𝜎 (𝑠) produces the traces when 𝑠 is running on object 𝑂 ; in particular, we let val𝑂𝜎 (this) = 𝑂 .

The evaluation rule for new below introduces an event newEv𝜎 (𝑜, 𝑣) to capture that a new object 𝑜
with arguments 𝑣 is created. Similar to Rule (41) that spawns a task, the local evaluation Rule (47)
for object creation creates a fresh symbolic variable 𝑋 to represent the unknown object identity
that is returned. Hence, Rule (47) has an empty path condition, extends the trace by the new object
creation event followed by an updated state, where 𝑥 is mapped to symbolic variable 𝑋 and object
fields are mapped to the constructor arguments. We suppose that G is pre-populated with enough
variables of each class. Consequently, Rule (47) can pick a symbolic variable 𝑋 that is fresh in 𝜎

and such that class(𝑋) = 𝐶 .

15It is possible to pass the caller’s identity as a call argument, which the callee could then use to return a value to the caller’s
state via a separate callback. But this does not give the caller a handle to access the result.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:39

val𝑂𝜎 (𝑥 := new 𝐶 (𝑒)) =
{∅ ⊲ newEv{𝑋 }𝜎 (𝑋, val𝑂𝜎 (𝑒)) ↷ 𝜎 [𝑥 ↦→ 𝑋,𝑋 ↦→ ∗, 𝑋 .fd ↦→ val𝑂𝜎 (𝑒)] · K()
| 𝑋 ∉ dom(𝜎), class(𝑋) = 𝐶, fd ∈ fields(𝐶)}

(47)

Rule (48) for non-blocking asynchronous method calls is similar to Rule (29), but the invocation
event invEv𝜎 (𝑣, 𝑥,𝑚, 𝑖) also includes the callee object 𝑥 and a message identifier 𝑖 ∈ MId. Thus,
asynchronous method calls can be viewed as a combination of procedure calls and message sending.

val𝑂𝜎 (𝑥 !𝑚(𝑒)) = {∅ ⊲ invEv𝜎 (val𝑂𝜎 (𝑒), val𝑂𝜎 (𝑥),𝑚, 𝑖) · K()} | 𝑖 ∈ MId} (48)

The following rule evaluates the body of a method and corresponds to Rule (36) but adapted to a
list of arguments instead of a single one. The invocation reaction event inserted by the rule includes
symbolic variables which represent the method’s actual parameters, which are unknown in the
local context. Since there are no return values, the caller needs not to be known. Consequently, the
event does not include the caller identity.16

val𝑂𝜎 (𝑚(𝑥) sc) = {∅ ⊲ invREv𝑍𝜎 (𝑍,𝑚, 𝑖) ↷ 𝜎 [𝑧 ↦→ 𝑍, 𝑍 ↦→ ∗] · K(𝑠𝑐 [𝑥 ← 𝑧])
| 𝑧, 𝑍 ∉ dom(𝜎), 𝑖 ∈ MId}

(49)

7.2.2 Trace Composition. As explained above, the local evaluation is parameterised with the
executing object 𝑂 . During trace composition, this parameter is instantiated by a concrete object
identifier 𝑜 . To associate events with the object they originate from, traces are tagged with that
object. This works exactly like the process identifier tags in Definition 6.1 of Section 6.

We use a mapping Ω into multisets of possible continuations like in Section 6, with the difference
that its domain is object identifiers instead of process identifiers. We use the same notation for
multiset operations as before.

Trace composition in Rule (50) follows Rule (42) closely , with two small modifications: instead of
process identifiers, objects identifiers are used and the evaluation of the continuation 𝑠 is performed
on the object 𝑜 , where it is scheduled. The first two premises of the rule capture the scheduling
decision to continue the trace by executing task 𝑠 on object 𝑜 .

𝑜 ∈ dom(Ω) Ω[𝑜] = 𝑞+{K(𝑠)} 𝜎 = last(𝑠ℎ)
𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝑜𝜎 (𝑠) 𝜌 concretizes 𝜏 𝜌 (𝑝𝑐) consistent wf (𝑠ℎ ∗∗ 𝜌 (𝜏)𝑜)

𝑠ℎ,Ω → 𝑠ℎ ∗∗ 𝜌 (𝜏)𝑜 ,Ω[𝑜 ↦→ 𝑞+{K(𝑠′)}]
(50)

Likewise, Rule (51) exactly follows the pattern established with Rule (43). The rule picks a method
𝑚 and an object 𝑜 , on which it is supposed to be executed. If that object is not yet in the domain of
Ω, then we use the notational convention Ω(𝑜) = ∅. This corresponds to object creation. Either
way, the method declaration is evaluated on 𝑜 . Observe that Rule (49) issues an invocation reaction
event. Well-formedness ensures that an invocation event of the form invEv (𝑣, 𝑜,𝑚, 𝑖) is present in
𝑠ℎ that matches the message identifier, method parameters, and callee.

lookup(𝑚,G) =𝑚(𝑥) sc 𝜎 = last(𝑠ℎ) 𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝑜𝜎 (𝑚(𝑥) sc)
𝜌 concretizes 𝜏 𝜌 (𝑝𝑐) consistent wf (𝑠ℎ ∗∗ 𝜌 (𝜏)𝑜)

𝑠ℎ,Ω → 𝑠ℎ ∗∗ 𝜌 (𝜏)𝑜 , Ω[𝑜 ↦→ Ω[𝑜]+{K(𝑠′)}]
(51)

16See Rule (55) in Section 7.3 that handles returning values via futures.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:40 C. C. Din et al.

7.2.3 Well-formedness. Well-formedness must essentially ensure two aspects: (1) the uniqueness
of events, for example, there is at most one newEv (𝑜, _) per object, i.e., an object cannot be created
twice; (2) the event sequence related to a call to a method𝑚 on object 𝑜 with parameters 𝑣 has the
following form:

· · · newEv𝑜
′′ (𝑜, 𝑣) · · · invEv𝑜

′ (𝑣 ′, 𝑜,𝑚, 𝑖) · · · invREv𝑜 (𝑣 ′,𝑚, 𝑖) · · ·

where 𝑜 ′ and 𝑜 ′′, which are the object identifiers specified in the superscripts of the new event
and the invocation event, can be the same object. This is achieved with the equations in Figure 9
(we do not repeat the first two lines of Definition 5.7, which are always assumed to be part of
well-formedness). Please observe that the well-formedness of the event sequence corresponding to
a method𝑚 invoked on an object 𝑜 is ensured by the identifiers of the callee and the message in
the invocation event and the invocation reaction event.

wf (𝑠ℎ↷ newEv𝑜
′ (𝑜, 𝑣)) =wf (𝑠ℎ) ∧ �𝑜 ′′, 𝑣 ′ . newEv𝑜 ′′ (𝑜, 𝑣 ′) ∈ 𝑠ℎ

wf (𝑠ℎ↷ invEv𝑜
′ (𝑣, 𝑜,𝑚, 𝑖)) =wf (𝑠ℎ) ∧ ∃𝑜 ′′, 𝑣 ′ .newEv𝑜 ′′ (𝑜, 𝑣 ′) ∈ 𝑠ℎ ∧

�𝑜 ′′′, 𝑣 ′′, 𝑜 ′′′′,𝑚′ . invEv𝑜 ′′′ (𝑣 ′′, 𝑜 ′′′′,𝑚′, 𝑖) ∈ 𝑠ℎ
wf (𝑠ℎ↷ invREv𝑜

′ (𝑣,𝑚, 𝑖)) =wf (𝑠ℎ) ∧ ∃𝑜.invEv𝑜 (𝑣, 𝑜 ′,𝑚, 𝑖) ∈ 𝑠ℎ ∧
�𝑜 ′′, 𝑣 ′,𝑚′ . invREv𝑜 ′′ (𝑣 ′,𝑚′, 𝑖) ∈ 𝑠ℎ

Fig. 9. Well-formedness for Actor language.

7.2.4 Global Trace Semantics.

Definition 7.1 (Program Semantics for Actors). Given a finite program 𝑃 with a lookup table G and
a main block main, i.e., Ωinit (𝑜main) = {K(main)}. Let 𝜎𝜀 denote the empty state, i.e. dom(𝜎𝜀) = ∅.
Let

𝑠ℎ0, Ω0 → 𝑠ℎ1, Ω1 → · · ·

be a maximal sequence obtained by the repeated application of the composition rules (Rules (50)–
(51)), starting with17

⟨𝜎𝜀⟩↷ newEv𝑜main (𝑜main, 𝜀), Ωinit .

If the sequence is finite, then it must have the form

⟨𝜎𝜀⟩↷ newEv𝑜main (𝑜main, 𝜀), Ωinit → · · · → 𝑠ℎ,Ω ,

where Ω (𝑜) = ∅ for all 𝑜 ∈ dom(Ω). If the sequence is infinite, let 𝑠ℎ = lim𝑖→∞ 𝑠ℎ𝑖 . The set of all
such potentially infinite traces 𝑠ℎ is denoted with Tr(𝑃, 𝜎𝜀).

The new event at the start of a trace represents creation, by the system, of an initial object that
runs the main method. The well-formedness of events ensures that subsequently created objects
will not erroneously be the initial object, which is reserved for the code executed in the main
method.

17Note that we denote by 𝜀 an empty list of method arguments.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:41

7.3 Active Objects

Active object languages [27] have a mechanism like futures or promises that provides a reference
to the value computed by an asynchronous method call. This makes it possible for a task to free its
processor resource while waiting for a result to be finished (so-called cooperative multi-tasking). We
modify the syntax from Section 7.2 and introduce futures, a return statement, and get-expressions
to retrieve the value stored in a future; the resulting syntax is given in Figure 10. Note that the
latter can block if this value is not yet available.

𝑃 ∈ Prog ::=𝐶𝐷 𝑠𝑐

𝐶𝐷 ∈ ClassDecl ::= class 𝐶 {fd 𝑀}
𝑀 ∈ MethDecl ::=𝑚(𝑥) 𝑠𝑐
𝑑 ∈ VarDecl ::= 𝜀 | 𝑥 ; 𝑑
𝑠𝑐 ∈ Scope ::= {𝑑 𝑠; return 𝑒}
𝑔 ∈ guard ::= 𝑒? | 𝑒
𝑠 ∈ Stmt ::= skip | 𝑥 := rhs | if 𝑒 { s } | while 𝑒 { s } | this.𝑚(𝑒) | await 𝑔 | s; s
rhs ∈ Rhs ::= 𝑒 | new 𝐶 (𝑒) | 𝑥 !𝑚(𝑒) | 𝑒.get

Fig. 10. Syntax of Active Objects with Futures.

We need to capture cooperative multi-tasking and the blocking of future access into the semantics.
This cannot be done with atomic, as in the previous section, because the suspending statements
might occur nested inside loops and recursive calls. Instead we ensure that a task runs uninterrupted
by imposing structural requirements that identify the currently running task. As a consequence we
specify a semantics with finer-grained, explicitly controlled interleaving between tasks. For this
reason, we now include while-loops as well as synchronous self-calls this.𝑚(𝑒) in the syntax.
The fine-grained semantics can handle non-terminating loops and recursion (with or without
suspending statements inside).
Task suspension takes place in await𝑔 statements, where the guard 𝑔 suspends the execution

of a task; it works similarly to the guarded statements of Section 5.6. An await releases its object’s
process, such that other tasks may be executed. The execution of the statements following the
guard can resume when the guard evaluates to true. Even when the guard evaluates to true, the
execution may be suspended. Guard expressions either have the form 𝑥?, which synchronize with
the future referenced by 𝑥 receiving a value (the future thereby gets resolved), or they are Boolean
expressions 𝑒 .
The second difference to the Actor language of Section 7.2 is that asynchronous method calls

return values to their associated future.18 The return statement terminates the execution of an
asynchronous method and returns its argument. The syntax enforces that the return statement is
at the end of a method body. Asynchronous method calls now appear on the right hand side of
an assignment, the variable on the left is a future associated with the call. The future’s value can
be retrieved with get, whose argument expression must evaluate to a future. To avoid blocking,
one can precede 𝑒.get with await 𝑒?. Futures are first-class values and may be passed as method
arguments to other objects.

7.3.1 Local Evaluation. For similar reasons as for objects in Section 7.2, we need to provide the
future towards whose value a local statement is contributing, as a parameter of the evaluation
function. This future, sometimes called the destiny of the executing code [28], cannot possibly be

18Obviously, synchronous calls can also be equipped with return values in a straightforward manner.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:42 C. C. Din et al.

known locally. Hence, the form of the semantic evaluation function becomes val𝑂,𝐹
𝜎 (𝑠), where 𝐹

is a symbolic variable of type future with values in FId; the evaluation function captures that 𝑠 is
running on object 𝑂 and has destiny 𝐹 . To keep track of the destiny, we store it together with the
continuations; in the configurations, continuations now take the form K𝑓 (𝑠).

The rule for assignment with an asynchronous call on the right-hand-side first emits an invocation
event invEv (𝑒, 𝑜,𝑚, 𝑓), similar to Rule (48). The difference is that now the future 𝐹 ′, that is the
destiny of the call, must be recorded both in the left-hand-side variable on the left and in the
invocation event. That future can also be used to identify the call, thus replacing the message
identifier. Since the value of 𝐹 ′ cannot be known locally, it is modeled as a fresh symbolic variable,
similarly as in Rules (40)–(41).

val𝑂,𝐹
𝜎 (𝑥 := 𝑒!𝑚(𝑒′)) =
{∅ ⊲ invEv{𝐹

′ }
𝜎 (val𝑂,𝐹

𝜎 (𝑒′), val𝑂,𝐹
𝜎 (𝑒),𝑚, 𝐹 ′) ↷ 𝜎 [𝑥 ↦→ 𝐹 ′, 𝐹 ′ ↦→ ∗] · K()

| 𝐹 ′ ∉ dom(𝜎)}
(52)

To ensure that only futures with an available value are retrieved, we introduce new events
compEv𝜎 (𝑓 , 𝑣) and compREv𝜎 (𝑓 , 𝑣). These events denote the completion (the value of future 𝑓 is
available) and completion reaction (the value of 𝑓 is retrieved) of an asynchronous method. The
evaluation rule for returning the completed result simply inserts a completion event for the current
future.

val𝑂,𝐹
𝜎 (return 𝑒) = {∅ ⊲ compEv𝜎 (𝐹, val𝑂,𝐹

𝜎 (𝑒)) · K()} (53)

To retrieve the returned value stored in a future, Rule (54) inserts a completion reaction event
and extends the current state with a symbolic variable 𝑉 that holds the as yet unknown return
value.

val𝑂,𝐹
𝜎 (𝑥 := 𝑒.get) = {∅ ⊲ compREv{𝑉 }𝜎 (val𝑂,𝐹

𝜎 (𝑒),𝑉) ↷ 𝜎 [𝑥 ↦→ 𝑉 ,𝑉 ↦→ ∗] · K()
| 𝑉 ∉ dom(𝜎)} (54)

The rule for evaluating a method body is similar to Rule (49), except that the future variable 𝑓
of the freshly running process is unified with the variable 𝑓 of the invocation reaction event.
It also must contain the (as yet unknown) caller 𝑌 . Well-formedness of the trace containing
invREv (𝑋,𝑌,𝑚, 𝑓) will ensure that the 𝑓 of the invocation reaction is matched with the same 𝑓 for
a matching invocation event (see the definition of wf (𝑠ℎ) below).

val𝑂,𝐹
𝜎 (𝑚(𝑥) sc) =
{∅ ⊲ invREv𝑋∪{𝑌 }𝜎 (𝑋,𝑌,𝑚, 𝐹) ↷ 𝜎 [𝑥 ′ ↦→ 𝑋,𝑋 ↦→ ∗, 𝑌 ↦→ ∗] · K(sc[𝑥 ← 𝑥 ′])
| 𝑥 ′, 𝑋, 𝑌 ∉ dom(𝜎)}

(55)

For while-loops, we can use Rule (9). Rule (56) handles synchronous self-calls (no other synchro-
nous calls are considered here) by inlining the method body. It obtains the method declaration of𝑚
with body 𝑠𝑐 using the auxiliary function lookup() and turns the formal parameters 𝑥 into local
variable declarations bound to the argument values 𝑒 . The entire statement sequence is wrapped
into a scope for name disambiguation.

val𝑂,𝐹
𝜎 (this.𝑚(𝑒)) = val𝑂,𝐹

𝜎 ({𝑥 ; 𝑥 := val𝑂,𝐹
𝜎 (𝑒); sc}), where lookup(𝑚,G) =𝑚(𝑥) sc (56)

Suspended tasks are introduced by await statements. We only need to specify how to progress
after an await—the trace composition semantics will deal with actual task suspension by checking
for the presence of an await guard. There are two syntactically distinct cases. The first corresponds
to a guarded command in Rule (38), the second requires that the guarded future is resolved and

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:43

thus introduces a completion reaction event. This event must match a previous completion event
involving the same future, which will be ensured by well-formedness in the global rules.

val𝑂,𝐹
𝜎 (await 𝑒) = {{val𝜎 (𝑒) = tt} ⊲ ⟨𝜎⟩ · K()}

val𝑂,𝐹
𝜎 (await 𝑒?) = {∅ ⊲ compREv{𝑉 }𝜎 (val𝑂,𝐹

𝜎 (𝑒),𝑉) · K() | 𝑉 ∉ dom(𝜎)}
(57)

7.3.2 Trace Composition. We extend the continuations in the configuration with a future iden-
tifier that corresponds to the future to be resolved by the considered task (thus, continuations
take the form K𝑓 (𝑠)). With active objects, there is no data-race among concurrent tasks, because
each data item belongs to one single active object and there is at most a single active task for each
active object. One way to realize this in the semantics is to assign a single process to each active
object and make sure that among all the tasks of this process, only one is not waiting for its turn.
In other words, for each object identifier 𝑜 , all continuations, except possibly one, are of the form
K𝑓 (await𝑔; 𝑠).
We use the symbol 𝑄 to denote a multiset of suspended or empty continuations of the form

K𝑓 (await𝑔; 𝑠) or K𝑓 (). The current global state of a program trace is represented by a mapping Σ
from object identifiers to multisets of continuations. For all object identifiers 𝑜 , Σ[𝑜] is either empty
or of the form 𝑄+{K𝑓 (𝑠)}, which reflects that there is at most one active task. If 𝑠 is of the form
await𝑔; 𝑠′, then no task is currently executing on object 𝑜 and any task can be activated; otherwise,
𝑠 must be the only continuation that can be executed in object 𝑜 . It is called the active task. The
rewrite rule for empty trace simplification is extended to the new continuations: 𝑄 + K𝑓 () ⇝ 𝑄 .
The trace composition rule closely follows Rule (50):

Σ[𝑜] = 𝑄+{K𝑓 (𝑠)} 𝜎 = last(𝑠ℎ)
𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝑜,𝑓𝜎 (𝑠) 𝜌 concretizes 𝜏 𝜌 (𝑝𝑐) consistent wf (𝑠ℎ ∗∗ 𝜌 (𝜏)𝑜)

𝑠ℎ, Σ→ 𝑠ℎ ∗∗ 𝜌 (𝜏)𝑜 , Σ[𝑜 ↦→ 𝑄+{K𝑓 (𝑠′)}]
(58)

The main difference is that the global state has a different signature and the nature of𝑄 enforces
the selection of the current task. Observe that this rule either evaluates the current active task or
activates a new task in 𝑜 when there is no active task.
Rule (59) follows Rule (51) except that the evaluation function is now tagged with a concrete

future identity 𝑓 . The correctness of the concretisation is ensured by the well-formedness premise
that requires an invocation event of the form invEv (𝑣, 𝑜,𝑚, 𝑓) to be present in 𝑠ℎ. Note that we
only run a new method if there is no active task (Σ[𝑜] = 𝑄). Here, the destiny of the created thread
is the future that was created during the evaluation of the invocation event invEv (𝑣, 𝑜,𝑚, 𝑓). As no
other task is active, the method can start running immediately.19

Σ[𝑜] = 𝑄 lookup(𝑚,G) =𝑚(𝑥) sc
𝜎 = last(𝑠ℎ) 𝑓 ∈ FId 𝑜 ∈ OId 𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝑜,𝑓𝜎 (𝑚(𝑥) sc)

𝜌 concretizes 𝜏 𝜌 (𝑝𝑐) consistent wf (𝑠ℎ ∗∗ 𝜌 (𝜏)𝑜)
𝑠ℎ, Σ→ 𝑠ℎ ∗∗ 𝜌 (𝜏)𝑜 , Σ[𝑜 ↦→ 𝑄+{K𝑓 (𝑠′)}]

(59)

This last rule can be triggered when 𝑄 is empty, i.e. when a newly created object handles its first
invocation or when an object has no task currently running.

Proposition 7.2. The property that Σ[𝑜] contains at most one active task for any 𝑜 ∈ OId is an
invariant preserved by applications of Rules (58)–(59).

19Running the method immediately allows us, for example, to encode a FIFO service policy by composing with the
communication ordering rules of Section 6.2

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:44 C. C. Din et al.

wf (𝑠ℎ↷ newEv𝑜
′ (𝑜, 𝑣)) =wf (𝑠ℎ) ∧ �𝑜 ′′, 𝑣 ′ . newEv𝑜 ′′ (𝑜, 𝑣 ′) ∈ 𝑠ℎ

wf (𝑠ℎ↷ invEv𝑜
′ (𝑣, 𝑜,𝑚, 𝑓)) =wf (𝑠ℎ) ∧ ∃𝑜 ′′, 𝑣 ′ .newEv𝑜 ′′ (𝑜, 𝑣 ′) ∈ 𝑠ℎ ∧

�𝑜 ′′′, 𝑣 ′′, 𝑜 ′′′′,𝑚′ . invEv𝑜 ′′′ (𝑣 ′′, 𝑜 ′′′′,𝑚′, 𝑓) ∈ 𝑠ℎ
wf (𝑠ℎ↷ invREv𝑜

′ (𝑣, 𝑜,𝑚, 𝑓)) =wf (𝑠ℎ) ∧ invEv𝑜 (𝑣, 𝑜 ′,𝑚, 𝑓) ∈ 𝑠ℎ ∧
�𝑜 ′′, 𝑣 ′, 𝑜 ′′′,𝑚′ . invREv𝑜 ′′ (𝑣 ′, 𝑜 ′′′,𝑚′, 𝑓) ∈ 𝑠ℎ

wf (𝑠ℎ↷ compEv𝑜 (𝑓 , 𝑣)) =wf (𝑠ℎ)
wf (𝑠ℎ↷ compREv𝑜 (𝑓 , 𝑣)) =wf (𝑠ℎ) ∧ ∃𝑜 ′, compEv𝑜

′ (𝑓 , 𝑣) ∈ 𝑠ℎ

Fig. 11. Well-Formedness for Actors with Futures.

Proof. When an object 𝑜 is created, Σ[𝑜] is empty. Every time one of the Rules (58)–(59) is
applied to 𝑜 , a continuation is added to Σ[𝑜]. As long as Σ[𝑜] contains only suspended continuations,
either rule can be applied to 𝑜 . Consequently, a suspended task on 𝑜 can be activated or a new
method invocation on 𝑜 can start to be executed. If there is one active task K𝑓 (𝑠) in Σ[𝑜], only
Rule (58) can be applied to 𝑜 . In this case, execution on 𝑜 is forced by Rule (58) to continue with
this specific K(𝑠), i.e., the active task on 𝑜 . □

The proposition guarantees that each object has at most one active task at any time. This captures
the semantics of sequential execution on an object between two suspension points.

7.3.3 Well-Formedness. Compared to Section 7.2.3, well-formedness must reflect the life cycle of
asynchronous method calls with completion and completion reaction events to ensure that return
values are not delivered and retrieved too early:

· · · newEv𝑜
′′ (𝑜, 𝑣) · · · invEv𝑜

′ (𝑣 ′, 𝑜,𝑚, 𝑓) · · · invREv𝑜 (𝑣 ′, 𝑜 ′,𝑚, 𝑓) · · ·
· · · compEv𝑜 (𝑓 , 𝑣) · · · compREv𝑜

′′′ (𝑓 , 𝑣) · · ·
where 𝑜 ′ and 𝑜 ′′ can be the same object, and 𝑜 ′′′ can be any object except 𝑜 . Up to tagging, the first
four events are unique in each trace, but not so the final completion reaction event. This is, because
any object can retrieve the value stored in a future as long as it possesses the future’s identifier.

The fourth equation in Figure 11 is straightforward, because (i) a return can only be encountered
after an invocation reaction event, which is guaranteed to be unique by the third equation, and
(ii) Rule (58) makes sure that it is evaluated on the matching future and object.

The final equation ensures the value of a future can only be fetched after the future is resolved.

7.3.4 Global Trace Semantics.

Definition 7.3 (Program Semantics for Active Objects). Given a program 𝑃 with a method table
G and a main block main, i.e., Σinit (𝑜main) = {K𝑓init (main)}. Let 𝜎𝜀 denote the empty state, i.e.
dom(𝜎𝜀) = ∅. Let

𝑠ℎ0, Σ0 → 𝑠ℎ1, Σ1 → · · ·
be a maximal sequence obtained by the repeated application of the composition rules (Rules (58)–
(59)), starting with

⟨𝜎𝜀⟩↷ newEv𝑜main (𝑜main, 𝜀), Σinit .

If the sequence is finite, then it must have the form

⟨𝜎𝜀⟩↷ newEv𝑜main (𝑜main, 𝜀), Σinit → · · · → 𝑠ℎ, Σ ,

where Σ (𝑜) = ∅ for all 𝑜 ∈ dom(Σ). If the sequence is infinite, let 𝑠ℎ = lim𝑖→∞ 𝑠ℎ𝑖 . The set of all
such potentially infinite traces 𝑠ℎ is denoted with Tr(𝑃, 𝜎𝜀).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:45

The new event at the start of a trace represents the creation, by the system, of an initial object
that runs the main method. The well-formedness of events ensures that subsequently created
objects will not erroneously be the initial object, which is reserved for code executed in the main
method.

Example 7.4. Consider the following program 𝑃 :

1 class 𝐶 {

2 𝑚(𝑛) {
3 𝑛 := 𝑛 + 1;
4 return 𝑛;

5 }

6 }

7 { // main block
8 𝑎; 𝑥 ; 𝑓 ; 𝑦;

9 𝑎 := 1;
10 𝑥 := new 𝐶();

11 𝑓 := 𝑥 !𝑚(𝑎);
12 await 𝑓 ?;
13 𝑦 := 𝑓 .get;
14 }

Let the global lookup table G for this program be {⟨𝐶, 𝜀,𝑚(𝑛){𝑛 := 𝑛 + 1; return 𝑛; }⟩}. In the
following, we use 𝑠𝑖 to indicate the sequence of statements of a method body starting from line 𝑖 .

We first show the abstract local traces. The evaluation of the𝑚𝑎𝑖𝑛 method is as follows, where
𝑠main represents the body in𝑚𝑎𝑖𝑛, and 𝑠9 corresponds to 𝑠main [𝑎 ← 𝑎′, 𝑥 ← 𝑥 ′, 𝑓 ← 𝑓 ′, 𝑦 ← 𝑦′].

val𝑂,𝐹
𝜎 ({ 𝑎;𝑥 ; 𝑓 ;𝑦; 𝑠main }) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑎′ ↦→ 0, 𝑥 ′ ↦→ 0, 𝑓 ′ ↦→ 0, 𝑦′ ↦→ 0] · K({ 𝑠9 })

| 𝑎′, 𝑥 ′, 𝑓 ′, 𝑦′ ∉ dom(𝜎)}
val𝑂,𝐹

𝜎 ({ 𝑠9 }) = val𝑂,𝐹
𝜎 (𝑠9)

val𝑂,𝐹
𝜎 (𝑎′ := 1) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑎′ ↦→ 1] · K()}

val𝑂,𝐹
𝜎 (𝑥 ′ := new 𝐶 ()) = {∅ ⊲ newEv{𝑋 }𝜎 (𝑋, 𝜀) ↷ 𝜎 [𝑥 ′ ↦→ 𝑋,𝑋 ↦→ ∗] · K()

| 𝑋 ∉ dom(𝜎), class(𝑋) = 𝐶}
val𝑂,𝐹

𝜎 (𝑓 ′ := 𝑥 ′!𝑚(𝑎′)) = {∅ ⊲ invEv{𝐹
′ }

𝜎 (val𝑂,𝐹
𝜎 (𝑎′), val𝑂,𝐹

𝜎 (𝑥 ′),𝑚, 𝐹 ′) ↷ 𝜎 [𝑓 ′ ↦→𝐹 ′, 𝐹 ′ ↦→∗] · K()
| 𝐹 ′ ∉ dom(𝜎)}

val𝑂,𝐹
𝜎 (await 𝑓 ′?) = {∅ ⊲ compREv{𝑉 }𝜎 (val𝑂,𝐹

𝜎 (𝑓 ′),𝑉) ↷ 𝜎 [𝑉 ↦→ ∗] · K() | 𝑉 ∉ dom(𝜎)}
val𝑂,𝐹

𝜎 (𝑦′ := 𝑓 ′ .get) = {∅ ⊲ compREv{𝑉 }𝜎 (val𝑂,𝐹
𝜎 (𝑓 ′),𝑉) ↷ 𝜎 [𝑦′ ↦→ 𝑉 ,𝑉 ↦→ ∗] · K()

| 𝑉 ∉ dom(𝜎)}

The evaluation of the body of method𝑚 is shown below, where 𝑠𝑐 represents {𝑛 := 𝑛+1; return𝑛; }
and 𝑠3 the content of the block 𝑠𝑐 [𝑛 ← 𝑛′].

val𝑂,𝐹
𝜎 (𝑚(𝑛) sc) = {∅ ⊲ invREv

{𝑁,𝑋,𝐹 ′ }
𝜎 (𝑁,𝑋,𝑚, 𝐹 ′)

↷ 𝜎 [𝑛′ ↦→𝑁, 𝑁 ↦→∗, 𝑋 ↦→∗, 𝐹 ′ ↦→∗] ·K(sc[𝑛 ← 𝑛′]) |𝑛′,𝑁 ,𝑋,𝐹 ′∉dom(𝜎)}
val𝑂,𝐹

𝜎 ({ 𝑠3 }) = val𝑂,𝐹
𝜎 (𝑠3)

val𝑂,𝐹
𝜎 (𝑛′:=𝑛′+1) = {∅ ⊲ ⟨𝜎⟩↷ 𝜎 [𝑛′ ↦→ val𝑂,𝐹

𝜎 (𝑛′ + 1)] · K()}
val𝑂,𝐹

𝜎 (return 𝑛′) = {∅ ⊲ compEv𝜎 (𝐹, val𝑂,𝐹
𝜎 (𝑛′)) · K()}

We now continue with the computation of a global concrete trace. Let 𝐼𝑃 be the initial state
of 𝑃 . We consider the state where the statements in lines 8–9 have already been executed. At
this point, the concrete trace is 𝑠ℎ = ⟨𝐼𝑃 ⟩ ↷ [𝑎′ ↦→ 0, 𝑥 ′ ↦→ 0, 𝑓 ′ ↦→ 0, 𝑦′ ↦→ 0] ↷ 𝜎 with
𝜎 = [𝑎′ ↦→ 1, 𝑥 ′ ↦→ 0, 𝑓 ′ ↦→ 0, 𝑦′ ↦→ 0], and the mapping Σ is [𝑜main ↦→ {K𝑓main (𝑠10)}]. Only Rule (58)
is applicable:

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:46 C. C. Din et al.

Σ[𝑜main] = {K𝑓main (𝑠10)} 𝜎 = last(𝑠ℎ)
∅ ⊲ newEv{𝑋 }𝜎 (𝑋, _) ↷ 𝜎 [𝑥 ′ ↦→ 𝑋,𝑋 ↦→ ∗] · K(𝑠11) ∈ val𝑜main,𝑓main

𝜎 (𝑠10)
𝜌 = [𝑋 ↦→ 𝑜𝑚] ∅ consistent wf (𝑠ℎ′)

𝑠ℎ, Σ→ 𝑠ℎ′, Σ[𝑜main ↦→ {K𝑓main (𝑠11)}]

(60)

where 𝑠ℎ′ is the concrete trace
𝑠ℎ ∗∗ 𝜌 (newEv{𝑋 }𝜎 (𝑋, 𝜀) ↷ 𝜎 [𝑥 ′ ↦→ 𝑋,𝑋 ↦→ ∗])𝑜main

= 𝑠ℎ ∗∗ 𝜌 (⟨𝜎⟩↷ newEv{𝑋 }𝜎 (𝑋, 𝜀) ↷ 𝜎 [𝑋 ↦→ ∗] ↷ 𝜎 [𝑥 ′ ↦→ 𝑋,𝑋 ↦→ ∗])𝑜main

= ⟨𝐼𝑃 ⟩↷ . . .↷ 𝜎 ↷ newEv𝑜main (𝑜𝑚, 𝜀) ↷ 𝜎 ↷ 𝜎 ′

with 𝜎 ′ = 𝜎 [𝑥 ′ ↦→ 𝑜𝑚] = [𝑎′ ↦→ 1, 𝑥 ′ ↦→ 𝑜𝑚, 𝑓
′ ↦→ 0, 𝑦′ ↦→ 0].20 We must continue with 𝑠11 by

applying Rule (58):

Σ[𝑜main] = {K𝑓main (𝑠11)} 𝜎 ′ = last(𝑠ℎ′)
𝜌 = [𝐹 ′ ↦→ 𝑓𝑚] ∅ consistent wf (𝑠ℎ′′)

∅ ⊲ invEv{𝐹
′ }

𝜎 ′ (1, 𝑜𝑚,𝑚, 𝐹 ′) ↷ 𝜎 ′ [𝑓 ′ ↦→ 𝐹 ′, 𝐹 ′ ↦→ ∗] · K (await 𝑓 ′?; 𝑠13)
∈ val𝑜main,𝑓main

𝜎 ′ (𝑠11)

𝑠ℎ′, Σ→ 𝑠ℎ′′, Σ[𝑜main ↦→ {K𝑓main (await 𝑓 ′?; 𝑠13)}]

(61)

where 𝑠ℎ′′ is the concrete trace
𝑠ℎ′ ∗∗ 𝜌 (invEv{𝐹

′ }
𝜎 ′ (1, 𝑜𝑚,𝑚, 𝐹 ′) ↷ 𝜎 ′ [𝑓 ′ ↦→ 𝐹 ′, 𝐹 ′ ↦→ ∗])𝑜main

= ⟨𝐼𝑃 ⟩↷ . . .↷ 𝜎 ′ ↷ invEv𝑜main (1, 𝑜𝑚,𝑚, 𝑓𝑚) ↷ 𝜎 ′ ↷ 𝜎 ′′

with 𝜎 ′′ = 𝜎 ′ [𝑓 ′ ↦→ 𝑓𝑚] = [𝑎′ ↦→ 1, 𝑥 ′ ↦→ 𝑜𝑚, 𝑓
′ ↦→ 𝑓𝑚, 𝑦

′ ↦→ 0].
At this point, one could in principle choose to continue with the await statement in𝑚𝑎𝑖𝑛 with

Rule (58) or to start executing method𝑚 on object 𝑜𝑚 with Rule (59). However, Rule (58) is not
applicable, because it does not result in a well-formed trace before method𝑚 returns. Therefore,
we proceed with the second option:

Σ[𝑜𝑚] = ∅ lookup(𝑚,G) =𝑚(𝑛) sc 𝜎 ′′ = last(𝑠ℎ′′) 𝑓𝑚 ∈ FId
∅ ⊲ invREv{𝑁,𝑋 ′,𝐹 ′′ }

𝜎 ′′ (𝑁,𝑋 ′,𝑚, 𝐹 ′′)
↷ 𝜎 ′′ [𝑛′ ↦→ 𝑁, 𝑁 ↦→ ∗, 𝑋 ′ ↦→ ∗, 𝐹 ′′ ↦→ ∗] · K({ 𝑠3 }) ∈ val𝑜𝑚,𝑓𝑚

𝜎 ′′ (𝑚(𝑛) sc)
𝜌 = [𝑁 ↦→ 1, 𝑋 ′ ↦→ 𝑜main, 𝐹

′′ ↦→ 𝑓𝑚] ∅ consistent wf (𝑠ℎ𝑚)

𝑠ℎ′′, Σ→ 𝑠ℎ𝑚, Σ[𝑜𝑚 ↦→ {K𝑓𝑚 ({ 𝑠3 })}]

(62)

where the mapping Σ is updated to [𝑜main ↦→ {K𝑓main (await 𝑓 ?; 𝑠13)}, 𝑜𝑚 ↦→ {K𝑓𝑚 ({ 𝑠3 })}], and
𝑠ℎ𝑚 is the concrete trace

𝑠ℎ′′ ∗∗ 𝜌 (invREv{𝑁,𝑋 ′,𝑚,𝐹 ′′ }
𝜎 ′′ (𝑁,𝑋 ′,𝑚, 𝐹 ′′) ↷ 𝜎 ′′ [𝑛′ ↦→ 𝑁, 𝑁 ↦→ ∗, 𝑋 ′ ↦→ ∗, 𝐹 ′′ ↦→ ∗])𝑜𝑚

= ⟨𝐼𝑃 ⟩↷ . . .↷ 𝜎 ′′ ↷ invREv𝑜𝑚 (1, 𝑜main,𝑚, 𝑓𝑚) ↷ 𝜎 ′′ ↷ 𝜎𝑚

with 𝜎𝑚 = 𝜎 ′′ [𝑛′ ↦→ 1].
We have to continue with { 𝑠3 } from the method𝑚. Executing 𝑛′ := 𝑛′ + 1 in 𝑠3 updates 𝜎𝑚 to

𝜎 ′𝑚 = 𝜎𝑚 [𝑛′ ↦→ val𝑜𝑚,𝑓𝑚
𝜎𝑚 (𝑛′ + 1)] = [𝑎′ ↦→ 1, 𝑥 ′ ↦→ 𝑜𝑚, 𝑓

′ ↦→ 𝑓𝑚, 𝑦
′ ↦→ 0, 𝑛′ ↦→ 2], which extends

the concrete trace to 𝑠ℎ′𝑚 as follows:

⟨𝐼𝑃 ⟩↷ . . .↷ 𝜎𝑚 ↷ 𝜎 ′𝑚 .

We proceed with the return statement in method𝑚 by applying Rule (58) once again:
20We simplify the states in the concrete trace by removing the symbolic variables once they are instantiated.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:47

Σ[𝑜𝑚] = {K𝑓𝑚 (return 𝑛′)} 𝜎 ′𝑚 = last(𝑠ℎ′𝑚)
∅ ⊲ compEv𝜎 ′𝑚 (𝑓𝑚, 2) · K() ∈ val

𝑜𝑚,𝑓𝑚
𝜎 ′𝑚

(return 𝑛′) 𝜌 = [] ∅ consistent wf (𝑠ℎ′′𝑚)

𝑠ℎ′𝑚, Σ→ 𝑠ℎ′′𝑚, Σ[𝑜𝑚 ↦→ ∅]
(63)

where Σ[𝑜𝑚 ↦→ ∅] is the result of simplifying Σ[𝑜𝑚 ↦→ ∅ + K𝑓𝑚 ()]. The resulting concrete trace
𝑠ℎ′′𝑚 is:

𝑠ℎ′𝑚 ∗∗ 𝜌 (compEv𝜎 ′𝑚 (𝑓𝑚, 2))
𝑜𝑚

= ⟨𝐼𝑃 ⟩↷ . . . 𝜎 ′𝑚 ↷ compEv𝑜𝑚 (𝑓𝑚, 2) ↷ 𝜎 ′𝑚 .

The mapping Σ is now updated to [𝑜main ↦→ {K𝑓main (await 𝑓 ′?; 𝑠13)}, 𝑜𝑚 ↦→ ∅]. Executing the
await statement in𝑚𝑎𝑖𝑛 at this point produces a well-formed trace by Rule (58):

Σ[𝑜main] = {K𝑓main (await 𝑓 ′?; 𝑠13)} 𝜎 ′𝑚 = last(𝑠ℎ′′𝑚)
∅ ⊲ compREv{𝑉 }

𝜎 ′𝑚
(𝑓𝑚,𝑉) ↷ 𝜎 ′𝑚 [𝑉 ↦→ ∗] · K(𝑠13) ∈ val

𝑜main,𝑓main
𝜎 ′𝑚

(await 𝑓 ′?; 𝑠13)
𝜌 = [𝑉 ↦→ 2] ∅ consistent wf (𝑠ℎ′′′)

𝑠ℎ′′𝑚, Σ→ 𝑠ℎ′′′, Σ[𝑜main ↦→ {K𝑓main (𝑠13)}]

(64)

with the concrete trace 𝑠ℎ′′′:

𝑠ℎ′′𝑚 ∗∗ 𝜌 (compREv{𝑉 }
𝜎 ′𝑚
(𝑓𝑚,𝑉) ↷ 𝜎 ′𝑚 [𝑉 ↦→ ∗])𝑜main

= ⟨𝐼𝑃 ⟩↷ . . .↷ 𝜎 ′𝑚 ↷ compREv𝑜main (𝑓𝑚, 2) ↷ 𝜎 ′𝑚 ↷ 𝜎 ′𝑚 .

The final state 𝜎 ′𝑚 is actually a simplification of 𝜎 ′𝑚 [𝑉 ↦→ 2] by removing the concretised symbolic
variable 𝑉 and thus identical to 𝜎 ′𝑚 .

Finally, we execute the get statement, again by Rule (58):

Σ[𝑜main] = {K𝑓main (𝑠13)} 𝜎 ′𝑚 = last(𝑠ℎ′′′)
∅ ⊲ compREv{𝑉

′ }
𝜎 ′𝑚
(val𝑜main,𝑓main

𝜎 ′𝑚
(𝑓),𝑉 ′) ↷ 𝜎 ′𝑚 [𝑦′ ↦→ 𝑉 ′,𝑉 ′ ↦→ ∗] · K() ∈ val𝑜main,𝑓main

𝜎 ′𝑚
(𝑠13)

𝜌 = [𝑉 ′ ↦→ 2] ∅ consistent wf (𝑠ℎ𝑃)

𝑠ℎ′′′, Σ→ 𝑠ℎ𝑃 , Σ[𝑜main ↦→ ∅]

(65)

which results the mapping Σ = [𝑜main ↦→ ∅, 𝑜𝑚 ↦→ ∅], and produces the concrete trace 𝑠ℎ𝑃 :

𝑠ℎ′′′ ∗∗ 𝜌 (compREv{𝑉
′ }

𝜎 ′𝑚
(val𝑜main,𝑓main

𝜎 ′𝑚
(𝑓)},𝑉 ′) ↷ 𝜎 ′𝑚 [𝑦′ ↦→ 𝑉 ′,𝑉 ′ ↦→ ∗])𝑜main

= ⟨𝐼𝑃 ⟩↷ [𝑎′ ↦→ 0, 𝑥 ′ ↦→ 0, 𝑓 ′ ↦→ 0, 𝑦′ ↦→ 0] ↷ 𝜎 ↷ newEv𝑜main (𝑜𝑚, _) ↷ 𝜎 ↷ 𝜎 ′

↷ invEv𝑜main (1, 𝑜𝑚,𝑚, 𝑓𝑚) ↷ 𝜎 ′ ↷ 𝜎 ′′ ↷ invREv𝑜𝑚 (1, 𝑜main,𝑚, 𝑓𝑚) ↷ 𝜎 ′′ ↷ 𝜎𝑚 ↷ 𝜎 ′𝑚
↷ compEv𝑜𝑚 (𝑓𝑚, 2) ↷ 𝜎 ′𝑚 ↷ compREv𝑜main (𝑓𝑚, 2) ↷ 𝜎 ′𝑚 ↷ 𝜎 ′𝑚
↷ compREv𝑜main (𝑓𝑚, 2) ↷ 𝜎 ′𝑚 ↷ 𝜎𝑃

with 𝜎𝑃 = [𝑎′ ↦→ 1, 𝑥 ′ ↦→ 𝑜𝑚, 𝑓
′ ↦→ 𝑓𝑚, 𝑦

′ ↦→ 2, 𝑛′ ↦→ 2].

7.3.5 ABS. ABS is an actor-based executable modeling language [2, 40, 58] that falls in the class
of Active Object languages [27]. ABS is closely related to the language in Figure 10. Before we
make this relation precise, we mention the main features of ABS that have not been discussed in
this paper:
Functional Expressions ABS lets the user declare algebraic datatypes and provides a pure, func-

tional languagewith patternmatching over these. An evaluation semantics for such a language
is standard [69]. It is easily incorporated into states and their evaluation.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:48 C. C. Din et al.

Interfaces ABS supports multiple implementations of interfaces, but no inheritance or dynamic
dispatch. It is sufficient to equip the lookup table G with suitable selectors.

Modules, Traits ABS has a simple module system. Modules do not have an operational semantics,
but manage the name space. One can remove them by replacing relative with absolute names.
ABS supports code reuse via traits: sets of method declarations that can be added to a class
via a uses clause. Like modules, traits can be assumed to have been resolved.

Error Handling ABS can throw and catch exceptions. The semantics of the corresponding state-
ments is a combination of the case distinction rule (8) and the local jump rule (45). The design
of the corresponding local evaluation rules is left as an exercise.

Otherwise, ABS is identical to the Active Object language discussed in the present section.
Specifically, ABS tasks are atomic by default. Their execution is only suspended explicitly, either at
the end of a method, or with a suspend statement (equivalent to “await true”), or by await𝑔.

7.4 A Unifying Perspective on Trace Composition Rules

As mentioned above, our semantics is modular in the sense that the local evaluation rules are
identical (up to addition of parameters) for all statements common to the considered languages.
What—necessarily—must change are the trace composition rules, because these implement different
parallel and concurrent composition patterns. But it is possible to provide a unifying set of meta
composition rules that can be instantiated to each previous incarnation and that sheds light on the
commonalities. We refrained to work with these general rules from the start, because that would
have been a major obstacle to readability.
We begin with a second look at the simplest composition rule (14) in the light of the various

extensions presented in the preceding sections. We repeat the rule here for convenience:

𝜎 = last(𝑠ℎ) 𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝜎 (𝑠) 𝑝𝑐 consistent

𝑠ℎ,K(𝑠) → 𝑠ℎ ∗∗ 𝜏,K(𝑠′)

The following aspects of this rule were generalized: (i) the result of val𝜎 (𝑠) in general is an
abstract trace that needs to be concretized; (ii) the extension of 𝑠ℎ with the concretized 𝜏 must be
well-formed; (iii) in a multi-processor setting, the events and states in traces are tagged with the
processor they relate to; (iv) evaluation of 𝑠 is parameterized with the current processor and the
destiny; (v) instead of a single continuation K(𝑠), there is a queue or process pool of pending tasks
which must be updated in the target configuration. Unifying meta rules must handle all of these
aspects simultaneously.
We unify task queues and pools with a function pool : proc→ queue × queue that maps each

processor 𝑝 to a pair ⟨𝑤 | 𝑎⟩ of waiting tasks𝑤 and active tasks 𝑎 with the conventions of Sect. 7.3.2.
Waiting tasks are merely needed for the semantics of active objects, otherwise the argument is
ignored. For both waiting and active task queues we define an abstract union operation + that is
instantiated to sets or multisets as required. Each element of a task queue is a continuation with an
optional destiny parameter.
The main challenge in the design of uniform composition rules is to unify the two scheduling

modes used in the languages under consideration: interleaving versus run-to-yield. In particular,
the composition rule that is responsible to execute method calls, must be able either to fire at any
time or else only when no active task is executed, respectively. To achieve this, active tasks 𝑎 may
contain a special token “enabled” that serves as a flag, controlling when a rule can be fired.
Processors 𝑝 are instantiated to either processors or objects as needed, thus unifying the Ω’s

and Σ’s in rule (42) and after. With these conventions in place, the following two rules unify the
progress and the method execution rules, respectively:

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:49

pool(𝑝) = ⟨𝑤 | 𝑎 + {K𝑓 (𝑠)}⟩ 𝜎 = last(𝑠ℎ)
𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝑝,𝑓𝜎 (𝑠) 𝜌 concretizes 𝜏 𝜌 (𝑝𝑐) consistent wf (𝑠ℎ ∗∗ 𝜌 (𝜏)𝑝)

𝑠ℎ, pool→ 𝑠ℎ ∗∗ 𝜌 (𝜏)𝑝 , pool[𝑝 ↦→ ⟨𝑤 | 𝑎 + {K𝑓 (𝑠′)}⟩]
(66)

pool(𝑝) = ⟨𝑤 | 𝑎⟩ 𝑎 = {} or enabled ∈ 𝑎 lookup(𝑚,G) =𝑚(𝑥) sc 𝜎 = last(𝑠ℎ)
𝑝𝑐 ⊲ 𝜏 · K(𝑠′) ∈ val𝑝,𝑓𝜎 (𝑚(𝑥) sc) 𝜌 concretizes 𝜏 𝜌 (𝑝𝑐) consistent wf (𝑠ℎ ∗∗ 𝜌 (𝜏)𝑝)

𝑠ℎ, pool→ 𝑠ℎ ∗∗ 𝜌 (𝜏)𝑝 , pool[𝑝 ↦→ ⟨𝑤 | 𝑎 + {K𝑓 (𝑠′)}⟩]
(67)

For languages with suspension (Sect. 7.3) we need two more rules that move waiting tasks back
and forth between the waiting and active task queues. These rules are not required for languages
without suspension statements and cannot fire in the latter case.

pool(𝑝) = ⟨𝑤 | 𝑎 + {K𝑓 (await𝑔; 𝑠)}⟩
𝑠ℎ, pool→ 𝑠ℎ, pool[𝑝 ↦→ ⟨𝑤 + {K𝑓 (await𝑔; 𝑠)} | 𝑎⟩]

(68)

pool(𝑝) = ⟨𝑤 + {K𝑓 (await𝑔; 𝑠)} | {}⟩
𝑠ℎ, pool→ 𝑠ℎ, pool[𝑝 ↦→ ⟨𝑤 | {K𝑓 (await𝑔; 𝑠)}⟩]

(69)

Together, the four rules above simulate rules (58)–(59), provided that 𝑓 ranges over futures, 𝑝 over
objects, where non-existing objects, i.e. those not occurring in 𝑠ℎ, are initialized pool(𝑝) = ⟨{} | {}⟩.
Observe that the constant “enabled” does not occur anywhere, so the method execution rule can
only fire when 𝑎 = {}.
To obtain rules (50)–(51), fix 𝑓 to an arbitrary concrete value which is ignored during local

evaluation. From now on, there is no await statement in the language, so𝑤 is always empty and
can be ignored in the following. Since 𝑠𝑐 has atomic shape, method bodies run to completion when
the condition of the method execution rule is satisfied.
To obtain rules (42)–(43), fix 𝑓 to an arbitrary concrete value, while both 𝑓 and 𝑝 are ignored

during local evaluation. The method lookup function now yields 𝑠𝑐 = {𝑠}. To instantiate the meta
rules correctly, it is sufficient to initialize pool(𝑝) = ⟨{} | {enabled}⟩.
Rule (37) is obtained by additionally fixing 𝑝 to an arbitrary concrete value 𝑝0. Task queue 𝑎

(minus “enabled”) corresponds to 𝑞 in rule (37). Languages, whose local evaluation rules do not
produce symbolic variables, yield unconditioned concrete traces. In this case, the 𝜌 in rule (37) is
empty, the second and third premise are always true and can be omitted, which gives an alternative
concrete rule to (31).
Finally, when no calls are present in the language, then the call rule is inapplicable. Also

pool(𝑝0) = ⟨{} | {K𝑓 (𝑠)}⟩, which specializes the abstract progress rule to rule (28) and, for
concrete local traces to rule (14).

8 APPLICATIONS

We review application scenarios, where the LAGC semantics has already been shown to be useful,
while in Section 10.1 we mention further areas, where we expect it to become so. All of the
applications of the LAGC semantic framework discussed below rely crucially on its properties and
could not easily have been realized with one of the existing semantics.

The program logic introduced in Section 4 is a proof of concept and kept at a deliberately abstract
level, because it serves as an illustration for the LAGC concept and it is not the main point of the
present paper. In [20] a similar program logic is instantiated to a directly implementable system
and the specification language of Section 4, which is based on first-order pre-/postconditions, is

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:50 C. C. Din et al.

generalized to a trace logic. This makes it possible to specify the structure of recursive calls and,
in general, any kind of event occurring during execution of a program. The resulting deductive
verification approach generalizes big-step procedure contracts [66] to trace properties. The LAGC
semantics aligns perfectly with the trace-based specification logic and permits a concise soundness
proof.

The distinction between local and composition rules permits to clearly identify and to understand
global scheduling and global synchronization points in the semantics of languages that model time
and resources (e.g., [59, 86]). The LAGC framework provides a fully modular semantics in these
cases [84].
The separation of concerns in the LAGC semantics between rules that generate computation

states on one hand and the scheduling rules on the other, makes it possible to characterize fairness
constructively at a semantic level. Even though all traces in LAGC are finite, semantics of non-
terminating programs are obtained by taking the limit over a set of finite (increasing) traces. This
make it possible to reason on fair scheduling in the context of LAGC [41]. There it is shows that
rules (58)–(59) can be refined so they become deterministic and constitute a provably fair scheduler
for a version of the active object language in Section 7.3. This is in contrast to most other approaches
to characterize fairness, where fairness is either defined abstractly in terms of transition systems
(for example, [80]) or via an external scheduler at system level [26]. Those approaches cannot
express fairness directly within the semantics. In contrast, in the LAGC semantics we are able to
formulate fair scheduling rules as an extension of the standard semantics. In addition, the LAGC
semantics permits to define a provably fair and directly implementable scheduler. In this setting,
the LAGC semantics revealed its strength compared to the alternatives, where reasoning about
fairness is notoriously difficult: Either because the fair semantics is significantly modified and hard
to compare with the original one—this happens with a naive implementation of a scheduler in
SOS; or, because reasoning on possible traces and fairness becomes difficult—this happens with
denotational semantics and other abstract approaches.

9 RELATEDWORK

We position our work within denotational semantics. The discussion focuses on three different
strands of work on trace semantics: Semantics based on execution traces, on communication traces,
and on hybrid traces combining execution states and communication events. To first motivate the
use of trace semantics, we start by drawing some lines from state-transformer semantics. We then
consider related work on execution traces and communication traces. We finally discuss related
work on hybrid traces, combining these directions.

State-transformer semantics. State-transformer semantics explain a program statement as a
transition from one program state to another [10, 51]. This style of semantics elegantly hides
intermediate states in the transition, thereby providing an abstraction from the inner, intermediate
states visited in the actual execution of statements. State-transformer semantics is fully abstract for
sequential while-programs, resulting in a compositional semantics with respect to, for example,
partial correctness behavior. However, for parallel shared-variable languages the final outcome of a
programmay depend on the scheduling of the different atomic sections, leading to non-deterministic
behavior. For a parallel statement, the state transformer that results from the parallel composition of
component statements cannot be determined from the transformer for these statements alone [17,
71]. Hence, state-transformer semantics for parallel languages are not compositional; it is necessary
to capture the intermediate states at which interleaving may occur. Mosses observes [71] that
by capturing these intermediate states as so-called resumptions [46], the resulting denotational
semantics corresponds much more closely to operational semantics [78].

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:51

Early work on verification of concurrent systems extended state-transformer semantics with
additional side-conditions, and is as such non-compositional; for example, interference freedom
tests were used for shared variable concurrency [76] and cooperation tests for synchronous message
passing [11]. Compositional approaches were introduced for shared variables in the form of rely-
guarantee [60] and for synchronous message passing in the form of assumption-commitment [68].
Extending these principles for compositional verification, object invariants can be used to achieve
modularity (for example, [55]).

Execution traces. The use of execution traces to describe program behavior can be motivated
by the need for additional structure in the semantics of statements, such that parallel statements
can be described compositionally from the semantics of their components. Brookes developed a
trace semantics for a shared-variable parallel language based on transition traces [17]. In his work,
a command is described by a sequence of state transformers reflecting the different atomic blocks
in the execution of the command, but abstracting from the inner states of these blocks. Transition
traces are thus more abstract than resumptions that are discussed above. The semantics of parallel
commands then corresponds to the union of these segments, obtained by stitching together the
state transitions corresponding to the different atomic sections in different ways. Brookes shows
that this semantics, which can be realised at different levels of granularity, is fully abstract. In fact,
we considered this solution in our work, but decided against it because it constructs infinitely large
mathematical objects in order to include all possible states in which the next atomic block can start.
Instead, we opted for continuation markers, to be resolved in the composition, as well as symbolic
traces that are concretised on demand during the composition phase. This ensures that all semantic
elements are finite, which makes the LAGC semantics easy and effective to compute.

Communication traces. Communication traces first appeared in the object-oriented setting [25]
and then for CSP [52]. Soundararajan developed an axiomatic proof system for CSP using histories
and projections [82], which was compositional and removed the need for cooperation tests. Zwiers
developed the first sound and complete proof system using communication traces [89]. Jeffrey and
Rathke introduced a semantics for object-oriented programs based on communication traces, and
showed full abstraction for testing equivalence [56, 57]. Reasoning about asynchronous method
calls and cooperative scheduling using histories was first done for Creol [36] and later adapted to
Dynamic Logic [5]. Din introduced a proof system based on four communication events, significantly
simplifying the proof rules [31], and extended the approach to futures [33, 34]. This four-event
proof system, which forms the basis for KeY-ABS [30], was the starting point for the communication
events used in our paper. This way, communication events can always be local to one semantic
object, and their ordering is captured by well-formedness predicates. Compared to this line of work,
we introduce continuation markers and locally symbolic traces. This allows us to constructively
derive global traces, in contrast to, for example, Din’s work which, building on Soundararajan’s
work, simply eliminates global traces which do not project correctly to the local trace sets of the
components.

Hybrid traces. Brookes’ action traces [18] bear some similarity to our work. He aims at de-
notational semantics using collecting semantics, explicitly represents divergence, synchronises
communication using events, and captures parallel execution of two components by means of a
so-called mutex fairmerge which ensures that both components get the chance to be executed.
Action traces were used to develop a semantics for concurrent separation logic [16], where sched-
uling is based on access to shared resources with associated invariants and data races are exposed.
Brookes’ work elegantly develops a trace semantics for low-level programming mechanisms with
lock resources. However, it does not cover the dynamic spawning of processes, procedure calls,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:52 C. C. Din et al.

method invocations, and similar topics covered in our work, which led to the locally abstract,
globally concrete formulation of hybrid trace semantics. In previous work [32] we used scheduling
events and well-formedness properties over scheduling events to capture all legal interleavings
among concurrent objects at a granularity similar to that of action traces. In contrast, parallel
execution in the present paper is based on a more fine-grained interleaving of processes, exploiting
continuations, by means of different composition rules (for example, (58) and (59)) to capture global
and local interleaving of processes. The approach of Brookes [18, 32] is easily expressible within
our framework. We obtain the equivalent of the fairmerge operator by collecting all traces that can
be constructed by the composition rules from a given concrete initial state.
In trace semantics, the composition of traces from parallel executions can be formalised in

different ways; e.g., as continuation semantics, erasure semantics or collecting semantics. We have
opted for the first approach and captured the interleaved execution by means of local continuations,
such that the global trace is obtained by gradually unfolding traces that correspond to local
execution by means of continuations. Kamburjan has explored erasure semantics in a hybrid trace
semantics developed as a foundation for behavioral program logic [61, 62]; this work uses an explicit
representation of the heap which is exploited for composition by introducing a fresh symbolic heap
as a local placeholder for execution in other objects at the scheduling points. The introduction of
fresh symbolic states for merging local behaviors can equivalently be replaced by a set collecting
all possible concrete states after the scheduling point, such that the composition of local behaviors
can be done by selecting the appropriate, compatible concrete traces rather than by instantiating a
symbolic trace. This approach has been studied in the context of hybrid trace semantics in [63].

The interplay between local and global views, which promotes a separation of concern between
local artefacts and their synchronisation, lies at the heart of choreography [8, 24, 50, 85]: Choreo-
graphies describe global protocols, which can be seen as scheduling patterns for interactions
between processes. A choreography captures a global view of an interaction protocol which, if
well-formed, can be decomposed into local processes (or types). The semantics of choreography
languages typically define a so-called endpoint projection, which generates local programs that
behave according to the global protocol. In contrast to the local projections of choreographies,
which start from global traces and decompose these into local programs, LAGC semantics starts
from local symbolic trace denotations of local programs, which are composed into global traces
using global rules and concretisation.
Parameterised labelled transition systems with queues have been used in ASP/ProActive [6] to

model communication structures for interaction with futures in a fine-grained, operational manner.
In contrast, our work with traces allows futures to be abstracted into communication events and
well-formedness conditions. We are unaware of previous work on programming language semantics
that captures different communication patterns as well-formedness constraints over trace semantics;
these constraints are in fact orthogonal to the building blocks of the trace semantics and allow to
study language behavior ranging over architectures that support different forms of communication
within a single semantic framework.

Interaction trees [87] have been used to encode the interaction with the environment in deno-
tational semantics for imperative programs. An interaction tree constitutes a form of trace that
expresses the effects of the program but abstract away from states. The authors provide co-inductive
principles for reasoning about diverging programs, which is more precise than our current handling
of infinite traces, but their approach is restricted to sequential programs. Choice trees [22] extend
interaction trees to address concurrency, focusing on a Coq formalisation. The concrete semantics
in choice trees is given by successive interpretations whereas LAGC semantics fully concretises
symbolic trace segments in the global rules. We believe that our approach is complementary to
choice trees and better adapted to logical reasoning about program properties.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

LAGC 1:53

The pure trace-based proof system of ABS [33, 34] requires strong hiding of local state: the state of
other objects can only be accessed through method calls, so shared state is internal and controlled
by cooperative scheduling. Consequently, specifications can be purely local. More expressive
specifications require significantly more complex proof systems, for example modifies clauses in
Boogie [55], fractional permissions [48] in Chalice [65], or dynamic frames in KeY [72]. To specify
fully abstract interface behavior these systems need to simulate histories in an ad hoc manner, see
[55, Figure 1]. A combination of permission-based separation logic [7] and histories has recently
been proposed for modular reasoning about multi-threaded concurrency [88]. The motivation for
our work stems from our aim to devise compositional proof systems to verify protocol-like behavior
for object-oriented languages [32] by combining communication histories for ABS with the trace
modality formulas of Nakata et al. [19, 73].

10 FUTUREWORK AND CONCLUSION

10.1 Future Work

The original motivation for the present work was to create a modular semantics that aligns well
with the kind of program logics used in deductive verification [42]. In Sections 4 and 5 we reached
this goal by providing a program logic and calculus for the shared variable language and by giving
a compact soundness proof (Thm. 4.6) for the sequential fragment. This result can and should be
extended to a state-of-art calculus for the language in Section 7.3 [63].
An obvious direction for future work is to fully mechanize the LAGC semantics in a proof

assistant [15, 74]. All definitions and theorems from Sections 2, 3, and 5 have been mechanized
and proven21 in Isabelle/HOL. The mechanization is executable in the sense that all traces in the
examples of the mentioned sections can be generated automatically from the HOL theories. We
plan to extend the Isabelle/HOL mechanization to cover also Sections 6, 7.2, and 7.3.

In Sections 5–7we showed that a wide variety of parallel programming concepts can be formalised
in LAGC style with relative ease. It would be interesting to explore how far this can be carried. On
the one hand, one could try to formalise the semantics of a major programming language, such as
Java or C. On the other hand, one could try to apply the LAGC framework to weakly consistent
memory models [3] or to the target the language of concurrent separation logic [16]. A further
possible extension concerns programs with non-terminating, atomic segments, see Section 5.2. A
mechanized, executable LAGC semantics opens the possibility of early prototyping new semantics
of concurrent and distributed languages with relative ease.
We rely heavily on well-formedness of traces, but we did not discuss how to define properties

on possibly infinite sets of infinite traces with events, for example, notions related to fairness. This
is a complementary problem to trace generation, and not the focus of the present paper.

Our approach makes composition of local rules easy, and extension of the language straightfor-
ward. Global trace composition on the contrary relies on well-formedness criteria for the whole
trace; even if this criteria is defined modularly, it is not compositional in the sense that a trace
can become invalid by extension of the criteria or parallel composition. This is often unavoidable
because the semantics of many concurrent models like CCS and 𝜋-calculus are by nature very
much sensitive to the execution context. However, depending on the language and the form of
concurrency, different compromises could be found, defining a greater part of the concurrent
semantics in a symbolic and compositional way. For example our semantics of futures is similar
to message passing but one could probably specify new composition tools that better take into
account the single-assignment property ensured by futures.

21See https://gitlab.com/Niklas_Heidler/mechanization-of-lagc-semantics-in-isabelle and [45].

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://gitlab.com/Niklas_Heidler/mechanization-of-lagc-semantics-in-isabelle

1:54 C. C. Din et al.

10.2 Conclusion

The semantics of concurrent programming languages is inherently a technically demanding subject.
In the best case, a formal semantics can illuminate the design space created by the choice of different
concurrency concepts, it shows the consequences of these choices, and it makes different version
comparable. This is only possible in a semantic framework that enforces uniform and modular
definitions, and it is what we strove to achieve with LAGC: the central design decision is to strictly
separate local, sequential computations and their parallel composition. Also, we decided to render
local evaluations abstract. In this way, one and the same schematic semantic evaluation rule can
be re-used for any initial state, executing processor, and destiny of the result. While abstract local
rules are not a theoretical necessity, they drastically simplify the complexity of definitions.

A central technical problem to address in a locally-globally divided setup is to ensure that enough
context information is available when composing concurrent behavior. Instead of computing all
possible states, in which an atomic segment can continue, we pass the remaining code to be executed
as a continuation. Again, this constitutes a considerable technical simplification compared to the
former option. For example, in Section 7.3 we characterised the behavior of active objects concisely
with a suitable definition of a continuation pool.

But mere continuation is not sufficient: one needs to orchestrate different local evaluations
within a global trace, for example, to ensure a method is called before it is being executed. This is
achieved by suitable events emitted during local evaluation. Orchestration of local computations
by events leads to a further separation of concerns: many concurrency models can be characterised
in a declarative manner by well-formedness of events inside traces, as shown in Section 6.2.
We believe the achieved separation of concerns, locally abstract evaluation—trace composition

with a continuation pool—orchestration of computations by well-formedness, provides a flexible
and usable semantic framework concurrent languages can be formalises and compares. It is close
to modern deductive verification calculi and could even be fully mechanised.

Acknowledgment

We would like to thank the following people for carefully reading drafts of this paper and for
detecting several omissions, errors, typos, and inaccuracies: Lukas Grätz, Dilian Gurov, Niklas
Heidler, Eduard Kamburjan, and Marco Scaletta. We also would like to thank the anonymous
reviewers for their valuable and constructive feedback that led to numerous improvements of the
text.

REFERENCES

[1] Jean-Raymond Abrial. 1996. The B Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge,
UK.

[2] ABS Development Team 2021. ABS Documentation (1.9.3 ed.). ABS Development Team. https://abs-models.org/manual.
[3] Sarita V. Adve and Mark D. Hill. 1993. A Unified Formalization of Four Shared-Memory Models. IEEE Trans. Parallel

Distributed Syst. 4, 6 (1993), 613–624. https://doi.org/10.1109/71.242161
[4] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mattias Ulbrich (Eds.).

2016. Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS, Vol. 10001. Springer, Cham,
Switzerland.

[5] Wolfgang Ahrendt and Maximilian Dylla. 2012. A system for compositional verification of asynchronous objects.
Science of Computer Programming 77, 12 (2012), 1289–1309.

[6] Rabéa Ameur-Boulifa, Ludovic Henrio, Oleksandra Kulankhina, Eric Madelaine, and A. Savu. 2017. Behavioural
semantics for asynchronous components. J. Logical and Algebraic Methods in Programming 89 (June 2017), 1–40.

[7] Afshin Amighi, Christian Haack, Marike Huisman, and Clément Hurlin. 2015. Permission-Based Separation Logic for
Multithreaded Java Programs. LMCS 11 (2015), 1–66. Issue 1.

[8] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay,
Nils Gesbert, Elena Giachino, RaymondHu, Einar Broch Johnsen, FranciscoMartins, VivianaMascardi, FabrizioMontesi,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://abs-models.org/manual
https://doi.org/10.1109/71.242161

LAGC 1:55

Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2016. Behavioral Types
in Programming Languages. Found. Trends Program. Lang. 3, 2-3 (2016), 95–230. https://doi.org/10.1561/2500000031

[9] Gregory Andrews. 1999. Multithreading, parallel, and concurrent programming (2nd ed.). Addison-Wesley, One Jacob
Way, Reading, MA 01867-3999.

[10] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. 2009. Verification of Sequential and Concurrent Programs.
Springer, Heidelberg. https://doi.org/10.1007/978-1-84882-745-5

[11] Krzysztof R. Apt, Nissim Francez, and Willem P. de Roever. 1980. A Proof System for Communicating Sequential
Processes. ACM Transactions on Programming Languages and Systems 2, 3 (1980), 359–385.

[12] Michael Balser, Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel, and Andreas Thums. 2000. Formal System Develop-
ment with KIV. In Fundamental Approaches to Software Engineering (LNCS, Vol. 1783), Tom Maibaum (Ed.). Springer,
Heidelberg, 363–366.

[13] Bernhard Beckert and Daniel Bruns. 2013. Dynamic Logic with Trace Semantics. In Automated Deduction, 24th
International Conference on Automated Deduction, Lake Placid, USA (LNCS, Vol. 7898), Maria Paola Bonacina (Ed.).
Springer, Heidelberg, 315–329.

[14] Mordechai Ben-Ari. 2008. Principles of the Spin Model Checker. Springer, Heidelberg.
[15] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development—Coq’Art: The Calculus of

Inductive Constructions. Springer, Berlin Heidelberg.
[16] Stephen Brookes. 2007. A semantics for concurrent separation logic. Theor. Comput. Sci. 375, 1-3 (2007), 227–270.
[17] Stephen D. Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. Inf. Comput. 127, 2 (1996), 145–163.
[18] Stephen D. Brookes. 2002. Traces, Pomsets, Fairness and Full Abstraction for Communicating Processes. In Proc. 13th

Intl. Conf. on Concurrency Theory (CONCUR 2002) (LNCS, Vol. 2421), Lubos Brim, Petr Jancar, Mojmír Kretínský, and
Antonín Kucera (Eds.). Springer, Berlin Heidelberg, 466–482.

[19] Richard Bubel, Crystal Chang Din, Reiner Hähnle, and Keiko Nakata. 2015. A Dynamic Logic with Traces and
Coinduction. In Intl. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods, Wroclaw, Poland (LNCS,
Vol. 9323), Hans De Nivelle (Ed.). Springer, Cham, Switzerland, 303–318.

[20] Richard Bubel, Dilian Gurov, Reiner Hähnle, and Marco Scaletta. 2022. Trace-based Deductive Verification. https:
//doi.org/10.48550/ARXIV.2211.09487

[21] Rod M. Burstall. 1974. Program proving as hand simulation with a little induction. In Information Processing ’74.
Elsevier/North-Holland, Amsterdam, 308–312.

[22] Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. 2023. Choice Trees: Representing
Nondeterministic, Recursive, and Impure Programs in Coq. Proc. of the ACM on Programming Languages 7, POPL (Jan.
2023), 1770–1800. https://doi.org/10.1145/3571254

[23] Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. 1996. Synchronous, Asynchronous, and Causally
Ordered Communication. Distributed Computing 9, 4 (1996), 173–191.

[24] Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2022. A Formal Theory of Choreographic Programming.
https://doi.org/10.48550/arXiv.2209.01886

[25] Ole-Johan Dahl. 1977. Can Program Proving be made Practical? In Les Fondements de la Programmation, M. Amirchahy
and D. Néel (Eds.). Institut de Recherche d’Informatique et d’Automatique, Toulouse, France, 57–114.

[26] Matthias Daum, Jan Dörrenbächer, and B. Wolff. 2009. Proving Fairness and Implementation Correctness of a
Microkernel Scheduler. Journal of Automated Reasoning 42 (2009), 349–388.

[27] Frank de Boer, Crystal Chang Din, Kiko Fernandez-Reyes, Reiner Hähnle, Ludovic Henrio, Einar Broch Johnsen, Ehsan
Khamespanah, Justine Rochas, Vlad Serbanescu, Marjan Sirjani, and Albert Mingkun Yang. 2017. A Survey of Active
Object Languages. Comput. Surveys 50, 5 (Oct. 2017), 76:1–76:39. Article 76.

[28] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. 2007. A Complete Guide to the Future. In Proceedings of the
16th European Symposium on Programming, (ESOP 2007) (LNCS, Vol. 4421), Rocco De Nicola (Ed.). Springer, Berlin,
Heidelberg, 316–330. https://doi.org/10.1007/978-3-540-71316-6_22

[29] Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM
18, 8 (1975), 453–457. https://doi.org/10.1145/360933.360975

[30] Crystal Chang Din, Richard Bubel, and Reiner Hähnle. 2015. KeY-ABS: A Deductive Verification Tool for the Concurrent
Modelling Language ABS. In Proc. 25th Intl. Conf. on Automated Deduction (CADE), Berlin, Germany (LNCS, Vol. 9195),
Amy Felty and Aart Middeldorp (Eds.). Springer, Cham, 517–526.

[31] Crystal Chang Din, Johan Dovland, Einar Broch Johnsen, and Olaf Owe. 2012. Observable behavior of distributed
systems: Component reasoning for concurrent objects. Journal of Logic and Algebraic Programming 81, 3 (2012),
227–256.

[32] Crystal Chang Din, Reiner Hähnle, Einar Broch Johnsen, Violet Ka I Pun, and Silvia Lizeth Tapia Tarifa. 2017. Locally
Abstract, Globally Concrete Semantics of Concurrent Programming Languages. In Proc. 26th Intl. Conf. on Automated
Reasoning with Tableaux and Related Methods (LNCS, Vol. 10501), Cláudia Nalon and Renate Schmidt (Eds.). Springer,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.48550/ARXIV.2211.09487
https://doi.org/10.48550/ARXIV.2211.09487
https://doi.org/10.1145/3571254
https://doi.org/10.48550/arXiv.2209.01886
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1145/360933.360975

1:56 C. C. Din et al.

Cham, Switzerland, 22–43.
[33] Crystal Chang Din and Olaf Owe. 2014. A sound and complete reasoning system for asynchronous communication with

shared futures. J. Log. Algebraic Methods Program. 83, 5–6 (2014), 360–383. https://doi.org/10.1016/j.jlamp.2014.03.003
[34] Crystal Chang Din and Olaf Owe. 2015. Compositional reasoning about active objects with shared futures. Formal

Aspects of Computing 27, 3 (2015), 551–572.
[35] Crystal ChangDin, Silvia Lizeth Tapia Tarifa, ReinerHähnle, and Einar Broch Johnsen. 2015. History-Based Specification

and Verification of Scalable Concurrent and Distributed Systems. In Proc. 17th International Conference on Formal
Engineering Methods, ICFEM, Paris (LNCS, Vol. 9407), Michael Butler, Sylvain Cochon, and Fatiha Zaïdi (Eds.). Springer,
Cham, Switzerland, 217–233.

[36] Johan Dovland, Einar Broch Johnsen, and Olaf Owe. 2005. Verification of Concurrent Objects with Asynchronous
Method Calls. In Proc. IEEE Intl. Conference on Software Science, Technology & Engineering(SwSTE’05). IEEE Computer
Society Press, Los Alamitos, CA, 141–150.

[37] Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and
State. Theor. Comput. Sci. 103, 2 (1992), 235–271. https://doi.org/10.1016/0304-3975(92)90014-7

[38] Patrice Godefroid. 1997. Model Checking for Programming Languages using Verisoft. In Proc. 24th Symp. on Principles
of Programming Languages (POPL), Peter Lee, Fritz Henglein, and Neil D. Jones (Eds.). ACM, New York, NY, 174–186.
https://doi.org/10.1145/263699.263717

[39] Patrice Godefroid. 2012. Test Generation Using Symbolic Execution. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS, Hyderabad, India (LIPIcs, Vol. 18), Deepak D’Souza,
Telikepalli Kavitha, and Jaikumar Radhakrishnan (Eds.). Leibniz-Zentrum fuer Informatik, Schloss Dagstuhl, 24–33.

[40] Reiner Hähnle. 2013. The Abstract Behavioral Specification Language: A Tutorial Introduction. In International School
on Formal Models for Components and Objects: Post Proceedings (LNCS, Vol. 7866), Marcello Bonsangue, Frank de Boer,
Elena Giachino, and Reiner Hähnle (Eds.). Springer, Cham, Switzerland, 1–37.

[41] Reiner Hähnle and Ludovic Henrio. 2023. Provably Fair Cooperative Scheduling. The Art, Science, and Engineering of
Programming 8, 2 (2023).

[42] Reiner Hähnle and Marieke Huisman. 2019. Deductive Verification: from Pen-and-Paper Proofs to Industrial Tools.
In Computing and Software Science: State of the Art and Perspectives, Bernhard Steffen and Gerhard Woeginger (Eds.).
LNCS, Vol. 10000. Springer, Cham, Switzerland, 345–373.

[43] Joseph Y. Halpern, Zohar Manna, and Ben C. Moszkowski. 1983. A Hardware Semantics Based on Temporal Intervals. In
Automata, Languages and Programming, 10th Colloquium, Barcelona, Spain (LNCS, Vol. 154), Josep DÃaz (Ed.). Springer,
Berlin, Heidelberg, 278–291. https://doi.org/10.1007/BFb0036915

[44] David Harel, Dexter Kozen, and Jerzy Tiuryn. 2000. Dynamic Logic. MIT Press, Boston, MA, USA.
[45] Niklas Heidler. 2021. Mechanization of LAGC Semantics in Isabelle. Bachelor Thesis. Technical University of Darmstadt,

Department of Computer Science. https://arxiv.org/abs/2202.08017
[46] Matthew Hennessy and Gordon D. Plotkin. 1979. Full Abstraction for a Simple Parallel Programming Language. In

Proc. 8th Symposium on the Mathematical Foundations of Computer Science (LNCS, Vol. 74), Jirí Becvár (Ed.). Springer,
Heidelberg, 108–120.

[47] Ludovic Henrio, Florian Kammüller, and Muhammad Uzair Khan. 2010. A Framework for Reasoning on Component
Composition. In Proceedings of the 8th International Symposium on Formal Methods for Components and Objects (FMCO
2009) (Lecture Notes in Computer Science), Frank S. de Boer, Marcello M. Bonsangue, Stefan Hallerstede, and Michael
Leuschel (Eds.). Springer, Heidelberg, 1–20. https://doi.org/10.1007/978-3-642-17071-3_1

[48] Stefan Heule, K. Rustan M. Leino, Peter Müller, and AlexanderJ. Summers. 2013. Abstract Read Permissions: Fractional
Permissions without the Fractions. In Verification, Model Checking, and Abstract Interpretation, Roberto Giacobazzi,
Josh Berdine, and Isabella Mastroeni (Eds.). LNCS, Vol. 7737. Springer, Berlin Heidelberg, 315–334. https://doi.org/10.
1007/978-3-642-35873-9_20

[49] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. 1973. A Universal Modular ACTOR Formalism for Artificial
Intelligence. In Proc. 3rd Intl. Joint Conf. on Artificial Intelligence. Standford, CA, USA, Nils J. Nilsson (Ed.). William
Kaufmann, San Francisco, CA, USA, 235–245. http://ijcai.org/Proceedings/73/Papers/027B.pdf

[50] Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: Higher-Order Typed Functional Choreographies. Proc. ACM
Program. Lang. 6, POPL, Article 23 (jan 2022), 27 pages. https://doi.org/10.1145/3498684

[51] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Comm. of the ACM 12, 10 (Oct. 1969), 576–580,
583.

[52] C. A. R. Hoare. 1985. Communicating Sequential Processes. Prentice Hall, Upper Saddle River, NJ.
[53] Gerard J. Holzmann. 2003. The SPIN Model Checker. Pearson Education, Boston, MA, USA.
[54] Michael Huth and Mark Ryan. 2004. Logic in Computer Science: Modelling and Reasoning about Systems (2nd ed.).

Cambridge University Press, Cambridge, UK.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1016/j.jlamp.2014.03.003
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/BFb0036915
https://arxiv.org/abs/2202.08017
https://doi.org/10.1007/978-3-642-17071-3_1
https://doi.org/10.1007/978-3-642-35873-9_20
https://doi.org/10.1007/978-3-642-35873-9_20
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/3498684

LAGC 1:57

[55] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, and Wolfram Schulte. 2005. Safe Concurrency for Aggregate Objects
with Invariants. In Third IEEE Intl. Conf. on Software Engineering and Formal Methods (SEFM 2005), Bernhard K.
Aichernig and Bernhard Beckert (Eds.). IEEE Computer Society, Los Alamitos, CA, 137–147.

[56] Alan Jeffrey and Julian Rathke. 2005. A fully abstract may testing semantics for concurrent objects. Theor. Comput. Sci.
338, 1-3 (2005), 17–63.

[57] Alan Jeffrey and Julian Rathke. 2005. Java Jr: Fully Abstract Trace Semantics for a Core Java Language. In Proc. 14th
European Symposium on Programming (ESOP 2005) (LNCS, Vol. 3444), Shmuel Sagiv (Ed.). Springer, Berlin Heidelberg,
423–438.

[58] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. 2011. ABS: A Core Language for
Abstract Behavioral Specification. In Proc. 9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010) (LNCS, Vol. 6957), Bernhard K. Aichernig, Frank de Boer, and Marcello M. Bonsangue (Eds.). Springer,
Heidelberg, 142–164.

[59] Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa. 2015. Integrating deployment architectures
and resource consumption in timed object-oriented models. J. Log. Algebraic Methods Program. 84, 1 (2015), 67–91.
https://doi.org/10.1016/j.jlamp.2014.07.001

[60] Cliff B. Jones. l981. Development Methods for Computer Programmes Including a Notion of Interference. Ph. D. Dissertation.
Oxford University, UK.

[61] Eduard Kamburjan. 2019. Behavioral Program Logic. In Proc. 28th International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX 2019) (LNCS, Vol. 11714), Serenella Cerrito and Andrei Popescu
(Eds.). Springer, Cham, Switzerland, 391–408. https://doi.org/10.1007/978-3-030-29026-9_22

[62] Eduard Kamburjan. 2020. Modular Verification of a Modular Specification: Behavioral Types as Program Logics. Ph. D.
Dissertation. Darmstadt University of Technology, Germany. http://tuprints.ulb.tu-darmstadt.de/11664/

[63] Eduard Kamburjan, Crystal Chang Din, Reiner Hähnle, and Einar Broch Johnsen. 2020. Behavioral Contracts for
Cooperative Scheduling. In Deductive Software Verification: Future Perspectives, Wolfgang Ahrendt, Bernhard Beckert,
Richard Bubel, Reiner Hähnle, and Mattias Ulbrich (Eds.). LNCS, Vol. 12345. Springer, Cham, 85–121.

[64] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (July 1976), 385–394.
[65] K. RustanM. Leino, Peter Müller, and Jan Smans. 2009. Verification of Concurrent Programs with Chalice. In Foundations

of Security Analysis and Design V, Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri (Eds.). LNCS, Vol. 5705.
Springer, Berlin Heidelberg, 195–222. https://doi.org/10.1007/978-3-642-03829-7_7

[66] Bertrand Meyer. 1992. Applying “Design by Contract”. IEEE Computer 25, 10 (Oct. 1992), 40–51.
[67] Robin Milner. 1989. Communication and Concurrency. Prentice-Hall, Inc., USA.
[68] Jayadev Misra and K. Mani Chandy. 1981. Proofs of Networks of Processes. IEEE Transactions on Software Engineering

7, 4 (1981), 417–426.
[69] John C. Mitchell. 1996. Foundations for programming languages. MIT Press, Boston, MA, USA.
[70] Peter D. Mosses. 2004. Modular structural operational semantics. The Journal of Logic and Algebraic Programming

60–61 (2004), 195–228. https://doi.org/10.1016/j.jlap.2004.03.008 Structural Operational Semantics.
[71] Peter D. Mosses. 2006. Formal Semantics of Programming Languages: — An Overview —. Electron. Notes Theor. Comput.

Sci. 148, 1 (2006), 41–73. https://doi.org/10.1016/j.entcs.2005.12.012
[72] Wojciech Mostowski. 2020. From Explicit to Implicit Dynamic Frames in Concurrent Reasoning for Java. In Deductive

Software Verification: Future Perspectives - Reflections on the Occasion of 20 Years of KeY, Wolfgang Ahrendt, Bernhard
Beckert, Richard Bubel, Reiner Hähnle, and Mattias Ulbrich (Eds.). LNCS, Vol. 12345. Springer, Cham, 177–203.
https://doi.org/10.1007/978-3-030-64354-6_7

[73] Keiko Nakata and Tarmo Uustalu. 2015. A Hoare logic for the coinductive trace-based big-step semantics of While.
Log. Methods Comput. Sci. 11, 1 (2015), 1–32. https://doi.org/10.2168/LMCS-11(1:1)2015

[74] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. LNCS, Vol. 2283. Springer, Berlin Heidelberg.

[75] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 1-3 (2007),
271–307.

[76] Susan S. Owicki and David Gries. 1976. An Axiomatic Proof Technique for Parallel Programs I. Acta Informatica 6
(1976), 319–340.

[77] Rohit Parikh, Ashok K. Chandra, Joseph Y. Halpern, and Albert R. Meyer. 1985. Equations Between Regular Terms and
an Application to Process Logic. SIAM J. Comput. 14, 4 (1985), 935–942. https://doi.org/10.1137/0214066

[78] Gordon D. Plotkin. 2004. A structural approach to operational semantics. J. Log. Algebr. Program. 60–61 (2004), 17–139.
[79] Davide Sangiorgi and David Walker. 2001. The Pi-Calculus: A theory of mobile processes. Cambridge University Press,

Cambridge, UK.
[80] Roberto Segala. 1997. Quiescence, Fairness, Testing, and the Notion of Implementation. Information and Computation

138, 2 (1997), 194–210. https://doi.org/10.1006/inco.1997.2652

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1007/978-3-030-29026-9_22
http://tuprints.ulb.tu-darmstadt.de/11664/
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1016/j.entcs.2005.12.012
https://doi.org/10.1007/978-3-030-64354-6_7
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.1137/0214066
https://doi.org/10.1006/inco.1997.2652

1:58 C. C. Din et al.

[81] A. Prasad Sistla and Edmund M. Clarke. 1985. The Complexity of Propositional Linear Temporal Logics. J. ACM 32, 3
(1985), 733–749.

[82] Neelam Soundararajan. 1984. Axiomatic Semantics of Communicating Sequential Processes. ACM Transactions on
Programming Languages and Systems 6, 4 (1984), 647–662.

[83] Dominic Steinhöfel and Reiner Hähnle. 2020. The Trace Modality. In 2nd Intl. Workshop on Dynamic Logic: New Trends
and Applications (Porto, Portugal) (LNCS, Vol. 12005), Alexandru Baltag and Luis S. Barbosa (Eds.). Springer, Cham,
124–140.

[84] Silvia Lizeth Tapia Tarifa. 2022. Locally Abstract Globally Concrete Semantics of Time and Resource Aware Active
Objects. In The Logic of Software. A Tasting Menu of Formal Methods (LNCS, Vol. 13360). Springer, Cham, 481–499.
https://doi.org/10.1007/978-3-031-08166-8_23

[85] Emilio Tuosto and Roberto Guanciale. 2018. Semantics of global view of choreographies. J. Log. Algebraic Methods
Program. 95 (2018), 17–40. https://doi.org/10.1016/j.jlamp.2017.11.002

[86] Gianluca Turin, Andrea Borgarelli, Simone Donetti, Ferruccio Damiani, Einar Broch Johnsen, and Silvia Lizeth Tapia
Tarifa. 2023. Predicting resource consumption of Kubernetes container systems using resource models. J. Syst. Softw.
203 (2023), 111750. https://doi.org/10.1016/j.jss.2023.111750

[87] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.
2020. Interaction trees: representing recursive and impure programs in Coq. Proceedings of the ACM on Programming
Languages 4, POPL (Jan 2020), 1–32. https://doi.org/10.1145/3371119

[88] Marina Zaharieva-Stojanovski, Marieke Huisman, and Stefan Blom. 2014. Verifying Functional Behaviour of Concurrent
Programs. In Proceedings of 16th Workshop on Formal Techniques for Java-like Programs (Uppsala, Sweden) (FTfJP’14).
ACM, New York, NY, USA, Article 4, 6 pages. https://doi.org/10.1145/2635631.2635849

[89] Job Zwiers. 1989. Compositionality, Concurrency and Partial Correctness: Proof Theories for Networks of Processes, and
Their Relationship. LNCS, Vol. 321. Springer, Heidelberg.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1007/978-3-031-08166-8_23
https://doi.org/10.1016/j.jlamp.2017.11.002
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.1145/3371119
https://doi.org/10.1145/2635631.2635849

	Abstract
	1 Introduction
	2 Basics
	2.1 States
	2.2 Evaluation
	2.3 Traces and Events
	2.4 Concretisation
	2.5 Continuations

	3 LAGC Semantics of WHILE
	3.1 Local Evaluation
	3.2 Trace Composition
	3.3 Global Trace Semantics
	3.4 Discussion

	4 A Program Logic and Sound Calculus for WHILE
	4.1 Dynamic Logic
	4.2 Calculus

	5 Semantics for a Shared-Variable Parallel Programming Language
	5.1 Local Parallelism
	5.2 Atomic
	5.3 Local Memory
	5.4 Introducing Events and Symbolic Traces
	5.5 Procedure Calls
	5.6 Guarded Statements

	6 Semantics For A Shared-Memory Multiprocessor Language
	6.1 LAGC Semantics
	6.2 Communication Patterns

	7 Case Studies
	7.1 ProMeLa
	7.2 Actors
	7.3 Active Objects
	7.4 A Unifying Perspective on Trace Composition Rules

	8 Applications
	9 Related Work
	10 Future Work and Conclusion
	10.1 Future Work
	10.2 Conclusion

	References

